• About
  • Members
  • Seminar
  • Visitors
  • Publications
  • Conferences
  • Magma
  • Login
Computational Algebra Group
Computational Algebra Seminar
  • 2000-2004
  • 2005-2009
  • 2010-2014
  • 2015
  • 2016
  • 2017
  • 2018
  • 2024
  • 2025
  • Kiran Kedlaya
  • The Sato-Tate conjecture for elliptic and hyperelliptic curves
  • 3pm–4pm, Tuesday 20th December, 2011
  • Carslaw 535
  • Consider a system of polynomial equations with integer coefficients. For each prime number p, we may reduce modulo p to obtain a system of polynomials over the field of p elements, and then count the number of solutions. It is generally difficult to describe this count as an exact function of p, so instead we take a statistical point of view, treating the count as a random variable and asking for its limiting distribution as we consider increasing large ranges of primes. Conjecturally, this distribution can be described in terms of the conjugacy classes of a certain compact Lie group. We illustrate this in three examples: polynomials in one variable, where everything is explained in terms of Galois theory by the Chebotarev density theorem; elliptic curves, where the dichotomy of outcomes is predicted by the recently proved Sato-Tate conjecture; and hyperelliptic curves of genus 2, where even the conjectural list of outcomes was only found still more recently.

The Computational Algebra Group is a research group within the School of Mathematics and Statistics, University of Sydney.
Copyright © 2010-2025 Computational Algebra Group.