2010

  1. Roya Beheshti and David Eisenbud, Fibers of generic projections, Compos. Math. 146 (2010), no. 2, 435–456.[MR/doi]
  2. Richard P. Brent and Paul Zimmermann, An O(M(n) log n) algorithm for the Jacobi symbol, Algorithmic Number Theory (Ninth International Symposium, ANTS-IX), Lecture Notes in Computer Science, vol. 6197, Springer, 2010, pp. 83–95.[doi]
  3. Richard P. Brent and Paul Zimmermann, Modern Computer Arithmetic, Cambridge University Press, 2010.[link]
  4. Gavin Brown and Daniel Ryder, Elliptic fibrations on cubic surfaces, J. Pure Appl. Algebra 214 (2010), no. 4, 410–421.[MR/doi]
  5. Gavin Brown and Francesco Zucconi, Graded rings of rank 2 Sarkisov links, Nagoya Math. J. 197 (2010), 1–44.[MR/doi]
  6. John Cannon, Steve Donnelly, Claus Fieker, and Mark Watkins, Magma: A tool for number theory, International Conference on Mathematical Software (ICMS-2010), Lecture Notes in Computer Science, vol. 6327, Springer, 2010, pp. 253–255.[doi]
  7. Wouter Castryck and John Voight, Nondegenerate curves of low genus over small finite fields, Arithmetic, Geometry, Cryptography and Coding Theory 2009, Contemporary Mathematics, vol. 521, Amer. Math. Soc., Providence, RI, 2010, pp. 21–28.
  8. Jérémie Detrey, Guillaume Hanrot, Xavier Pujol, and Damien Stehlé, Accelerating lattice reduction with FPGAs, in Proceedings of the First international conference on Progress in cryptology: cryptology and information security in Latin America, LATINCRYPT'10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 124–143.[doi]
  9. Tim Dokchitser and Vladimir Dokchitser, On the Birch-Swinnerton-Dyer quotients modulo squares, Annals of Math. 172 (2010), no. 1, 567 – 596.[MR/doi]
  10. Claus Fieker and Damien Stehlé, Short bases of lattices over number fields, Algorithmic Number Theory (Ninth International Symposium, ANTS-IX), Lecture Notes in Computer Science, vol. 6197, Springer, 2010, pp. 157–173.[doi]
  11. M. M. Gehringer, J. J. L. Pengelly, W. S. Cuddy, C. Fieker, P. I. Forster, and B. A Neilan, Host selection of symbiotic cyanobacteria in 31 species of the Australian cycad genus: Macrozamia (Zamiaceae), Molecular Plant-Microbe Interactions 23 (2010), no. 6, 811-822.[doi]
  12. William Hart, Gonzalo Tornaría, and Mark Watkins, Congruent number theta coefficients to 1012, Algorithmic Number Theory (Ninth International Symposium, ANTS-IX), Lecture Notes in Computer Science, vol. 6197, Springer, 2010, pp. 186–200.[doi]
  13. George Havas and Derek F. Holt, On Coxeter's families of group presentations, J. Algebra 324 (2010), no. 5, 1076 – 1082.[doi]
  14. Derek F. Holt and Colva M. Roney-Dougal, Constructing maximal subgroups of orthogonal groups, LMS J. Comput. Math. 13 (2010), 164 – 191.[MR/doi]
  15. Alexander M. Kasprzyk, Canonical toric Fano threefolds, Canad. J. Math. 62 (2010), no. 6, 1293–1309.[MR/doi/arXiv]
  16. Alexander M. Kasprzyk, Maximilian Kreuzer, and Benjamin Nill, On the combinatorial classification of toric log del Pezzo surfaces, LMS J. Comput. Math. 13 (2010), 33–46.[MR/doi/arXiv]
  17. Markus Kirschmer and John Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. 39 (2010), no. 5, 1714–1747.[MR/doi]
  18. Christopher W. Parker and Robert A. Wilson, Recognising simplicity of black-box groups by constructing involutions and their centralisers, J. Algebra 324 (2010), no. 5, 885–915.[MR/doi]
  19. Allan K. Steel, Computing with algebraically closed fields, J. Symbolic Comput. 45 (2010), no. 3, 342–372.[MR/doi]
  20. Damien Stehlé and Ron Steinfeld, Faster fully homomorphic encryption, Advances in Cryptology - ASIACRYPT 2010, Lecture Notes in Computer Science, vol. 6477, Springer Berlin / Heidelberg, 2010, pp. 377–394.[doi]
  21. Damien Stehlé and Mark Watkins, On the extremality of an 80-dimensional lattice, Algorithmic Number Theory (Ninth International Symposium, ANTS-IX), Lecture Notes in Computer Science, vol. 6197, Springer, 2010, pp. 340–356.[doi]
  22. M. Vejdemo-Johansson, Blackbox Computation of A-algebras, Georgian Journal of Mathematics 17 (2010), no. 2, 391–404.[doi]
  23. John Voight, Computing automorphic forms on shimura curves over fields with arbitrary class number, Algorithmic Number Theory (Ninth International Symposium, ANTS-IX), Lecture Notes in Computer Science, vol. 6197, Springer, 2010, pp. 357–371.[doi]
  24. Robert A. Wilson, A new approach to the Suzuki groups, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 3, 425–428.[MR/doi]
  25. Robert A. Wilson, A simple construction of the Ree groups of type 2F4, J. Algebra 323 (2010), no. 5, 1468–1481.[MR/doi]
  26. Robert A. Wilson, Another new approach to the small Ree groups, Arch. Math. (Basel) 94 (2010), no. 6, 501–510.[MR/doi]
  27. Robert A. Wilson, On the compact real form of the Lie algebra g2, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 1, 87–91.[MR/doi]
  28. Dan Yasaki, Hyperbolic tessellations associated to Bianchi groups, Algorithmic Number Theory (Ninth International Symposium, ANTS-IX), Lecture Notes in Computer Science, vol. 6197, Springer Berlin / Heidelberg, 2010, pp. 385–396.[doi]

2011

  1. Ada Boralevi and Jarosław Buczyński, Secant varieties to Lagrangian Grassmannians, Annali di Mat Pura ed Applicata 190 (2011), no. 4, 725–739.[doi/arXiv]
  2. Carl Bracken, Eimear Byrne, Gary McGuire, and Gabriele Nebe, On the equivalence of quadratic APN functions, Designs, Codes and Cryptography 61 (2011), no. 3, 261–272.[doi]
  3. Richard P. Brent and Paul Zimmermann, The great trinomial hunt, Notices of the American Mathematical Society 58 (2011), no. 2, 233–239.[link]
  4. Jack O. Button, Proving finitely presented groups are large by computer, Experiment. Math. 20 (2011), no. 2, 153–168.[doi/arXiv]
  5. Lisa Carbone, Leigh Cobbs, and Scott H. Murray, Fundamental domains for congruence subgroups of SL2 in positive characteristic, Journal of Algebra 325 (2011), no. 1, 431 – 439.[doi]
  6. Brendan Creutz, Potential sha for abelian varieties, Journal of Number Theory 131 (2011), 2162–2714.[doi]
  7. Matthew Greenberg and John Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms, Math. Comp. 80 (2011), 1071 – 1092.[doi]
  8. Michael Harrison, A new automorphism of X0(108), preprint (2011).[arXiv]
  9. Gábor Hegedüs and Alexander M. Kasprzyk, Roots of Ehrhart polynomials of smooth Fano polytopes, Discrete Comput. Geom. 46 (2011), no. 3, 488–499.[MR/doi/arXiv]
  10. Masakazu Jimbo, Yuna Kunihara, Reinhard Laue, and Masanori Sawa, Unifying some known infinite families of combinatorial 3-designs, J. Comb. Theory, Ser. A 118 (2011), no. 3, 1072 – 1085.[doi]
  11. Scott H. Murray and Colva M. Roney-Dougal, Constructive homomorphisms for classical groups, Journal of Symbolic Computation 46 (2011), no. 6, 371–384.[doi]
  12. Andrew Novocin, Damien Stehlé, and Gilles Villard, An LLL-reduction algorithm with quasi-linear time complexity, in Proc. 43rd ACM Symposium on Theory of Computing, 2011.[doi]
  13. Dan Roozemond, On Lie algebras generated by few extremal elements, J. Algebra 348 (2011), no. 1, 462–476.[doi/arXiv]
  14. M. Watkins, Some comments about indefinite LLL, in Diophantine Methods, Lattics, and Arithmetic Theory of Quadratic Forms, Contemporary Mathematics, AMS, Providence, RI, 2011, pp. 233–243.[MR]
  15. M. Watkins and A. Granville, Rank 7 quadratic twist(s) of the congruent number curve, European Mathematical Society, Basel, 2011, pp. 2022–2024.[doi]
  16. Mark Watkins, Computing with Hecke Grössencharacters, Publications mathématiques de Besancon (2011), 119–135.[link]

2012

  1. Mohammad Akhtar, Tom Coates, Sergey Galkin, and Alexander M. Kasprzyk, Minkowski polynomials and mutations, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 094, 17.[MR/doi/arXiv]
  2. Brendan Creutz, A Grunwald-Wang type theorem for abelian varieties, Acta Arith. 154 (2012), 353–370.[link]
  3. Brendan Creutz and Robert L. Miller, Second isogeny descents and the Birch and Swinnerton-Dyer conjectural formula, J. Algebra 372 (2012), 673–701.[doi]
  4. Claus Fieker and Virgile Ducet, Computing equations of curves with many points, in Proceedings of the ANTS-X conference, The Open Book Series, vol. 1, Mathematical Science Publishers, 2012, pp. 317-334.[doi]
  5. Jon Gonzalez-Sanchez, Michael Harrison, Irene Polo-Blanco, and Josef Schicho, Algorithms for Del Pezzo surfaces of degree 5 (construction, parametrization), J. Symbolic Computation 47 (2012), no. 3, 342–353.[doi/arXiv]
  6. Michael Harrison, An extension of Kedlaya's algorithm for hyperelliptic curves, J. Symbolic Computation 47 (2012), no. 1, 89 – 101.[doi/arXiv]
  7. Gábor Hegedüs and Alexander M. Kasprzyk, The boundary volume of a lattice polytope, Bull. Aust. Math. Soc. 85 (2012), no. 1, 84–104.[MR/doi/arXiv]
  8. Alexander Kasprzyk and Benjamin Nill, Fano polytopes, Strings, Gauge Fields, and the Geometry Behind - The Legacy of Maximilian Kreuzer, World Scientific Publishing, 2012, pp. 349–364.[MR/doi]
  9. Alexander Kasprzyk and Benjamin Nill, Reflexive polytopes of higher index and the number 12, Electron. J. Combin. 19 (2012), no. 3, Paper 9, 18.[MR/link]
  10. David Loeffler and Jared Weinstein, On the computation of local components of a newform, Mathematics of Computation 81 (2012), no. 278, 1179 – 1200.[doi/arXiv]
  11. Allan Steel, Construction of ordinary irreducible representations of finite groups, PhD Thesis, University of Sydney, 2012.
  12. Nicole Sutherland, Efficient computation of maximal orders in radical (including Kummer) extensions, Journal of Symbolic Computation 47 (2012), 552–567.[doi]
  13. D. E. Taylor, Reflection subgroups of finite complex reflection groups, J. Algebra 366 (2012), 218–234.[MR/doi]
  14. M. Watkins, Some remarks on Heegner point computations, Explicit Methods in Number Theory (2012), 81–97.[MR]
  15. Mark Watkins, Another 80-dimensional extremal lattice, Journal de théorie des nombres de Bordeaux 24 (2012), no. 1, 237–255.[doi]

2013

  1. B. Allombert, F. Beukers, H. Cohen, A. Mellit, P. Molin, D. Roberts, F. Rodriguez Villegas, M. Vlasenko, and M. Watkins, Hypergeometric motives, in Explicit Methods in Number Theory, vol. 10, European Mathematical Society Publishing House, Zürich, 2013, pp. 2039–2041.[doi]
  2. Gavin Brown and Alexander Kasprzyk, Seven new champion linear codes, LMS J. Comput. Math. 16 (2013), 109–117.[MR/doi/arXiv]
  3. Gavin Brown and Alexander Kasprzyk, Small polygons and toric codes, J. Symbolic Computation 51 (2013), 55–62.[MR/doi/arXiv]
  4. Harrison M. C., Explicit solution by radicals, gonal maps and plane models of algebraic curves of genus 5 or 6, J. Symbolic Computation 51 (2013), 3–21.[doi/arXiv]
  5. Tom Coates, Alessio Corti, Sergey Galkin, Vasily Golyshev, and Alexander M. Kasprzyk, Mirror symmetry and Fano manifolds, Proceedings of the 6th European Congress of Mathematics (Kraków, 2-7 July, 2012), European Mathematical Society, 2013, pp. 285–300.[doi/arXiv]
  6. Brendan Creutz, Explicit descent in the Picard group of a cyclic cover of the projective line, ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium OBS 1 (2013), 295–315.[doi]
  7. Brendan Creutz, Locally trivial torsors that are not Weil-Châtelet divisible, Bulletin of the London Mathematical Society 45 (2013), 935–942.[doi]
  8. Claus Fieker, István Gaál, and Michael Pohst, On computing integral points of a Mordell curve over rational function fields in characteristic > 3, J. Number Theory 133 (2013), no. 2, 738–750.[MR/doi]
  9. Nicole Sutherland, Efficient computation of maximal orders in Artin–Schreier extensions, Journal of Symbolic Computation 53 (2013), 26–39.[doi]
  10. Mark Watkins, Some comments about indefinite LLL, in Diophantine Methods, Lattics, and Arithmetic Theory of Quadratic Forms, Proceedings of a BIRS Workshop, Contemporary Mathematics, vol. 587, 2013, pp. 233–243.
  11. Yinan Zhang, p-adic verification of class number computations, PhD Thesis, University of Sydney, 2013.

2014

  1. J. -F. Biasse, Claus Fieker, and T. Hoffmann, On the computation of the HNF of a module over the ring of integers of a number field, Journal of Symbolic Computation 80 (2014), 581–615.[doi]
  2. Jean-François Biasse and Claus Fieker, Subexponential class group and unit group computation in large degree number fields., LMS J. Comput. Math. 17A (2014), 385–403.[doi]
  3. Tom Coates, Samuel Gonshaw, Alexander Kasprzyk, and Navid Nabijou, Mutations of fake weighted projective spaces, Electron. J. Combin. 21 (2014), no. 4, Paper 4, 14.[MR/link]
  4. Brendan Creutz, Second p-descents on elliptic curves, Mathematics of Computation 83 (2014), 365–409.[doi]
  5. D. Dailey, A. Hair, and M. Watkins, Move similarity analysis in chess programs, Entertainment Computing 5 (2014), no. 3, 159–171.[doi]
  6. A. -S. Elsenhans, A note on short cosets, Experimental Mathematics 23 (2014), 411-413.[doi]
  7. A. -S. Elsenhans and J. Jahnel, Examples of K3 surfaces with real multiplication, in Proceedings of the ANTS XI conference (Gyeongju 2014), vol. 17, 2014, pp. 14–35.[doi]
  8. Claus Fieker and Tommy Hofmann, Computing in quotients of rings of integers., LMS J. Comput. Math. 17A (2014), 349–365.[doi]
  9. Claus Fieker and Jürgen Klüners, Computation of Galois groups of rational polynomials., LMS J. Comput. Math. 17 (2014), 141–158.[doi]
  10. M. Harrison, Xiaogang Liu, and Yuan Luo, A Note on the Five Valued Conjectures of Johansen, Helleseth and Kholosha and Zeta Functions, IEEE Comm. Lett. 18(9) (2014), 1483–1486.[doi]
  11. M. Watkins, Solved openings in losing chess, ICGA Journal 37 (2014), no. 2, 106–110.[doi]
  12. Mark Watkins, Stephen Donnelly, Noam D. Elkies, Tom Fisher, Andrew Granville, and Nicholas F. Rogers, Ranks of quadratic twists of elliptic curves, Publications mathématiques de Besançon, Algebra and Number Theory (2014), no. 2, 63-98.[link]