
The New LLL Routine in the
MAGMA Computational

Algebra System
Damien Stehlé

http://www.loria.fr/~stehle

University of Sydney/Université Nancy 1

The New LLL Routine in the MAGMA Computational Algebra System – p. 1

http://www.loria.fr/~stehle

Plan of the Talk

Reminders on the LLL algorithm.

How to use the new MAGMA LLL.

NTL versus MAGMA.

Further improvements.

The New LLL Routine in the MAGMA Computational Algebra System – p. 2

Quick bibliography

Lenstra-Lenstra-Lovász ’82.

Schnorr-Euchner ’94.

Nguyễn-Stehlé ’05.

Nguyễn-Stehlé ’06.

The New LLL Routine in the MAGMA Computational Algebra System – p. 3

1) Reminders on lattices

The New LLL Routine in the MAGMA Computational Algebra System – p. 4

Lattices are useful in many areas

Computer algebra.

Algorithmic number theory.

Computational group theory.

Linear integral relation detection.

Cryptanalysis.

Computer arithmetic.

The New LLL Routine in the MAGMA Computational Algebra System – p. 5

Euclidean lattices

Lattice = discrete subgroup of R
n.

L[bi] =
{

∑d
i=1 xibi, xi ∈ Z

}

,

represented by a d × n matrix.

If the bi’s are linearly independent, they are a
lattice basis.

Dimension: shared cardinality of the bases.

First minimum: λ(L) = min(‖b‖ : b ∈ L\{0}).

In this talk, d = n and L ⊂ Z
d.

The New LLL Routine in the MAGMA Computational Algebra System – p. 6

Gram-Schmidt orthogonalisation

b∗
1 = b1, b∗

i = bi −
∑i−1

j=1 µi,jb
∗
j , µi,j =

〈bi,b
∗

j 〉
‖b∗

j‖2 .

detL[bi] =
∏

‖b∗
i‖ is independent of the bi’s.

b1

b2

b3

b∗
2

b∗
3

The New LLL Routine in the MAGMA Computational Algebra System – p. 7

Two main computational tasks

Given a basis of a d-dimensional lattice L,
compute a vector b1 ∈ L which is:

not very long as regard to λ(L).

not very long as regard to det(L)1/d.

The New LLL Routine in the MAGMA Computational Algebra System – p. 8

LLL reduction

A basis (b1, . . . ,bd) is (δ, η)-LLL-reduced if:
(1) ∀i > j, |µi,j| ≤ η.
(2) ∀i, δ · ‖b∗

i−1‖ ≤ ‖b∗
i + µi,i−1b

∗
i−1‖,

where δ ∈ (0.25, 1) and η ∈ (0.5,
√

δ).

(2) means: in (b1, . . . ,bi−2)
⊥, bi−1 is approx.

shorter than bi.

Often (δ, η) = (0.999, 0.501).

The New LLL Routine in the MAGMA Computational Algebra System – p. 9

Properties of LLL-reduced bases

‖b1‖ ≤
(

δ − η2
)−(d−1)/4 · (det L)1/d,

‖b1‖ ≤ (δ − η2)−(d−1)/2 · λ(L),

∏d
i=1 ‖bi‖ ≤ (δ − η2)−d(d−1)/4 · (detL),

∀j < i, ‖b∗j‖ ≤ (δ − η2)(j−i)/2 · ‖b∗i‖.

The New LLL Routine in the MAGMA Computational Algebra System – p. 10

The rational LLL algorithm

Input: (b1, . . . ,bd) linearly independent.
Output: A LLL-reduced basis of L[bi].
1.κ := 2. While κ ≤ d, do:
2. Make all the |µκ,i|’s smaller than η:
3. Compute the µκ,i’s.
4. For i from κ − 1 down to 1 do, if |µκ,i| ≥ η:
5. bκ := bκ − ⌊µκ,i⌉bi.
6. For j from 1 to i do µκ,j := µκ,j − ⌊µκ,i⌉µi,j.

7. If δ‖b∗

κ−1
‖ ≤ ‖b∗

κ + µκ,κ−1b
∗

κ−1
‖, then κ := κ + 1.

8. Else swap bκ−1 and bκ, κ := max(κ − 1, 2).

The New LLL Routine in the MAGMA Computational Algebra System – p. 11

The floating-point LLL

Classical LLL: Gram-Schmidt computations
done with rational numbers with huge
numerators and denominators.

fp-LLL: Gram-Schmidt computations done
with floating-point approximations with much
smaller mantissas.

To get a provable fp-LLL, one needs arbitrary
precision fp numbers and the Gram matrix of
the basis [Stehlé-Nguyễn ’05].

The New LLL Routine in the MAGMA Computational Algebra System – p. 12

LLL implementations

Fast LLL implementations rely on floating-point
computations, based on [Schnorr-Euchner ’94].

NTL.

MAGMA.

Pari GP.

LiDIA.

Maple, Mathematica, Gap.

The New LLL Routine in the MAGMA Computational Algebra System – p. 13

2) The new LLL routine of
MAGMA

The New LLL Routine in the MAGMA Computational Algebra System – p. 14

Main properties

Correctness.

Termination.

Reasonably fast
(in particular with the Fast option).

Works for linearly dependent vectors and
all symmetric matrices.

The New LLL Routine in the MAGMA Computational Algebra System – p. 15

Correctness

When Proof is true, the output basis is
(δ, η)-LLL-reduced.
MAGMA contains the only guaranteed fp-LLL.

Internally, δ and η are strengthened.

The output is not sorted by length anymore.

To obtain better timings than before, set Proof to
false, or use LatticeReduce.

The New LLL Routine in the MAGMA Computational Algebra System – p. 16

Main options
Warning:
the default variant is seldom the one you want.

LLL parameters δ and η (default: 0.75, 0.501).

SwapCondition. Siegel’s condition:

‖b∗
i+1‖2 ≥ (δ − η2) · ‖b∗

i‖2.

EarlyReduction. Vectors can be
size-reduced in advance.

Fast. The above parameters are chosen
automatically for you.

The New LLL Routine in the MAGMA Computational Algebra System – p. 17

You want a LLL-reduced basis

Keep the default variant.

Eventually set (δ, η) closer to (1, 1/2).

Eventually set Proof to false.

The New LLL Routine in the MAGMA Computational Algebra System – p. 18

You want the main LLL properties

Set SwapCondition to Siegel.

Eventually set EarlyReduction to true.

Eventually set Proof to false.

The New LLL Routine in the MAGMA Computational Algebra System – p. 19

You want a somehow reduced basis

Set Proof to false.

Activate the Fast option.
It will output a LLL-reduced basis for some
factors δ, η.

These factors will be given to you.

The New LLL Routine in the MAGMA Computational Algebra System – p. 20

3) Comparison of diverse
LLLs

The New LLL Routine in the MAGMA Computational Algebra System – p. 21

Compared software

MAGMA 2.12 and 2.13, NTL 5.4.

On a 2.4 GHz AMD Opteron.

Using GNU MP 4.2.1 and Gaudry’s patch,
for both NTL and MAGMA.

Using MPFR 2.2.0 for MAGMA.

All timings in seconds.

δ = 0.75, η = 0.501.

The New LLL Routine in the MAGMA Computational Algebra System – p. 22

Termination test in dimension 3

1 −1 0

2100 + 1 2100 − 1 0

2100 2100 − 1 1

.

NTL’s G_LLL_FP loops forever.

MAGMA 2.12’s LLL without UseGram and
UnderflowCheck: falls down to integral
method.

PARI: incorrect answer (2 weeks ago).

The New LLL Routine in the MAGMA Computational Algebra System – p. 23

Termination test in dimension 55

Worst-case for the correctness proof of
[Nguyễn-Stehlé ’05].

NTL’s LLL_FP and LLL_XD loop forever.

MAGMA 2.12’s LLL without UseGram:
falls down to integral method. 3.43s.

PARI: 2.67s.

MAGMA 2.13’s LLL: 0.014s.

The New LLL Routine in the MAGMA Computational Algebra System – p. 24

Uniform entries in dimension 1000

All entries uniformly chosen with log B bits.

log B NTL MAGMA 2.12 MAGMA 2.13
10 5.43 6.03 5.49

1000 204 46.8 13.2

Pari: > 8000s for the first matrix.

The New LLL Routine in the MAGMA Computational Algebra System – p. 25

Knapsack-type bases

Non trivial entries are log B bit long.

d log B NTL V2.12 V2.13 V2.13 Fast

10 100, 000 37.6 6.69 5.16 2.99

100 10, 000 344 269 134 42.1

150 5, 000 ∞1, 3240 4993 597 250

1NTL’s LLL_XD loops forever: ⇒ LLL_RR.

The New LLL Routine in the MAGMA Computational Algebra System – p. 26

Simult. Diophantine approximation

Dimension 76, non-trivial entries of ≈ 5000 bits.

NTL V2.12 V2.13 V2.13 Fast

1142 ∞? 76.5 42.8

The New LLL Routine in the MAGMA Computational Algebra System – p. 27

4) Further improvements

The New LLL Routine in the MAGMA Computational Algebra System – p. 28

Possible improvements for LLL

Givens and Householder orthogonalisations?

Provable variant without the Gram matrix.
Technical difficulty: computing a portion of
the product of two integers.

Low-level improvement of the integer
operation “big + small × big”.

The New LLL Routine in the MAGMA Computational Algebra System – p. 29

Other LLL-related routines

PowerRelations and IntegerRelations.

Coppersmith’s method for the small roots of
polynomials (the modular univariate case is
already available).

Schnorr’s block-Korkine-Zolotarev algorithm.

The New LLL Routine in the MAGMA Computational Algebra System – p. 30

	Plan of the Talk
	Quick bibliography
	Lattices are useful in many areas
	Euclidean lattices
	Gram-Schmidt orthogonalisation
	Two main computational tasks
	LLL reduction
	Properties of LLL-reduced bases
	The rational LLL algorithm
	The floating-point LLL
	LLL implementations
	Main properties
	Correctness
	Main options
	You want a LLL-reduced basis
	You want the main LLL properties
	You want a somehow reduced basis
	Compared software
	Termination test in dimension 3
	Termination test in dimension 55
	Uniform entries in dimension 1000
	Knapsack-type bases
	Simult. Diophantine approximation
	Possible improvements for LLL
	Other LLL-related routines

