The New LLL Routine in the MAGMA Computational Algebra System

Damien Stehlé
http://www.loria.fr/~stehle

University of Sydney/Université Nancy 1

Plan of the Talk

- Reminders on the LLL algorithm.
- How to use the new MAGMA LLL.
- NTL versus MAGMA.
- Further improvements.

Quick bibliography

Lenstra-Lenstra-Lovász '82.

- Schnorr-Euchner '94.

Nguyễn-Stehlé '05.
Nguyễn-Stehlé '06.

1) Reminders on lattices

Lattices are useful in many areas

Computer algebra.
Algorithmic number theory.
Computational group theory.

- Linear integral relation detection.
- Cryptanalysis.
- Computer arithmetic.

Euclidean lattices

- Lattice = discrete subgroup of \mathbb{R}^{n}.
$L\left[\mathbf{b}_{i}\right]=\left\{\sum_{i=1}^{d} x_{i} \mathbf{b}_{i}, x_{i} \in \mathbb{Z}\right\}$,
represented by a $d \times n$ matrix.
- If the b_{i} 's are linearly independent, they are a lattice basis.
- Dimension: shared cardinality of the bases.
- First minimum: $\lambda(L)=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash\{0\})$.

In this talk, $d=n$ and $L \subset \mathbb{Z}^{d}$.

Gram-Schmidt orthogonalisation

$\mathbf{b}_{1}^{*}=\mathbf{b}_{1}, \quad \mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{j=1}^{i-1} \mu_{i, j} \mathbf{b}_{j}^{*}, \mu_{i, j}=\frac{\left\langle\mathbf{b}_{i} \mathbf{b}_{j}^{*}\right\rangle}{\left\|\mathbf{b}_{j}^{*}\right\|^{2}}$.
$\operatorname{det} L\left[\mathbf{b}_{i}\right]=\Pi\left\|\mathbf{b}_{i}^{*}\right\|$ is independent of the \mathbf{b}_{i} 's.

Two main computational tasks

Given a basis of a d-dimensional lattice L, compute a vector $\mathrm{b}_{1} \in L$ which is:

- not very long as regard to $\lambda(L)$.
- not very long as regard to $\operatorname{det}(L)^{1 / d}$.

LLL reduction

A basis $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right)$ is (δ, η)-LLL-reduced if:
(1) $\forall i>j, \quad\left|\mu_{i, j}\right| \leq \eta$.
(2) $\forall i, \quad \delta \cdot\left\|\mathbf{b}_{i-1}^{*}\right\| \leq\left\|\mathbf{b}_{i}^{*}+\mu_{i, i-1} \mathbf{b}_{i-1}^{*}\right\|$,
where $\delta \in(0.25,1)$ and $\eta \in(0.5, \sqrt{\delta})$.
(2) means: in $\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{i-2}\right)^{\perp}, \mathrm{b}_{i-1}$ is approx. shorter than b_{i}.
Often $(\delta, \eta)=(0.999,0.501)$.

Properties of LLL-reduced bases

$$
\begin{aligned}
& \left\|b_{1}\right\| \leq\left(\delta-\eta^{2}\right)^{-(d-1) / 4} \cdot(\operatorname{det} L)^{1 / d}, \\
& \left\|b_{1}\right\| \leq\left(\delta-\eta^{2}\right)^{-(d-1) / 2} \cdot \lambda(L), \\
& \prod_{i=1}^{d}\left\|b_{i}\right\| \leq\left(\delta-\eta^{2}\right)^{-d(d-1) / 4} \cdot(\operatorname{det} L), \\
& \forall j<i,\left\|b_{j}^{*}\right\| \leq\left(\delta-\eta^{2}\right)^{(j-i) / 2} \cdot\left\|b_{i}^{*}\right\| .
\end{aligned}
$$

The rational LLL algorithm

Input: $\quad\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{d}\right)$ linearly independent.
Output: A LLL-reduced basis of $L\left[\mathrm{~b}_{i}\right]$.

1. $\kappa:=2$. While $\kappa \leq d$, do:
2. Make all the $\left|\mu_{\kappa, i}\right|$'s smaller than η :
3. Compute the $\mu_{\kappa, i}$'s.
4. For i from $\kappa-1$ down to 1 do, if $\left|\mu_{\kappa, i}\right| \geq \eta$:
5. $\quad \mathbf{b}_{\kappa}:=\mathbf{b}_{\kappa}-\left\lfloor\mu_{\kappa, i}\right\rangle \mathbf{b}_{i}$.
6. For j from 1 to i do $\mu_{\kappa, j}:=\mu_{\kappa, j}-\left\lfloor\mu_{\kappa, i}\right\rceil \mu_{i, j}$.
7. If $\delta\left\|\mathbf{b}_{\kappa-1}^{*}\right\| \leq\left\|\mathbf{b}_{\kappa}^{*}+\mu_{\kappa, \kappa-1} \mathbf{b}_{\kappa-1}^{*}\right\|$, then $\kappa:=\kappa+1$.
8. Else swap $\mathbf{b}_{\kappa-1}$ and $\mathbf{b}_{\kappa}, \kappa:=\max (\kappa-1,2)$.

The floating-point LLL

Classical LLL: Gram-Schmidt computations done with rational numbers with huge numerators and denominators.
fp-LLL: Gram-Schmidt computations done with floating-point approximations with much smaller mantissas.

To get a provable fp-LLL, one needs arbitrary precision fp numbers and the Gram matrix of the basis [Stehlé-Nguyễn '05].

LLL implementations

Fast LLL implementations rely on floating-point computations, based on [Schnorr-Euchner '94].

NTL.
MAGMA.

- Pari GP.
- LiDIA.
- Maple, Mathematica, Gap.

2) The new LLL routine of MAGMA

Main properties

Correctness.
Termination.

- Reasonably fast
(in particular with the Fast option).
Works for linearly dependent vectors and all symmetric matrices.

Correctness

When Proof is true, the output basis is (δ, η)-LLL-reduced.
MAGMA contains the only guaranteed $f p$-LLL.

- Internally, δ and η are strengthened.

The output is not sorted by length anymore.
To obtain better timings than before, set Proof to false, or use LatticeReduce.

Main options

Warning:
the default variant is seldom the one you want.
LLL parameters δ and η (default: $0.75,0.501$).
SwapCondition. Siegel's condition:

$$
\left\|\mathbf{b}_{i+1}^{*}\right\|^{2} \geq\left(\delta-\eta^{2}\right) \cdot\left\|\mathbf{b}_{i}^{*}\right\|^{2} .
$$

- EarlyReduction. Vectors can be size-reduced in advance.
- Fast. The above parameters are chosen automatically for you.

You want a LLL-reduced basis

Keep the default variant.
Eventually set (δ, η) closer to (1, $1 / 2$).
Eventually set Proof to false.

You want the main LLL properties

Set SwapCondition to Siegel.
Eventually set EarlyReduction to true.
Eventually set Proof to false.

You want a somehow reduced basis

Set Proof to false.
Activate the Fast option.
It will output a LLL-reduced basis for some factors δ, η.
These factors will be given to you.

3) Comparison of diverse LLLs

Compared software

MAGMA 2.12 and 2.13, NTL 5.4.
On a 2.4 GHz AMD Opteron.
Using GNU MP 4.2.1 and Gaudry's patch, for both NTL and MAGMA.

Using MPFR 2.2.0 for MAGMA.
All timings in seconds.

- $\delta=0.75, \eta=0.501$.

Termination test in dimension 3

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
2^{100}+1 & 2^{100}-1 & 0 \\
2^{100} & 2^{100}-1 & 1
\end{array}\right]
$$

NTL's G_LLL_FP loops forever.
MAGMA 2.12's LLL without UseGram and UnderflowCheck: falls down to integral method.

- PARI: incorrect answer (2 weeks ago).

Termination test in dimension 55

Worst-case for the correctness proof of [Nguyễn-Stehlé '05].

NTL's LLL_FP and LLL_XD loop forever.

- MAGMA 2.12's LLL without UseGram: falls down to integral method. 3.43s.
- PARI: 2.67s.
- MAGMA 2.13's LLL: 0.014s.

Uniform entries in dimension 1000

All entries uniformly chosen with $\log B$ bits.

$\log B$	NTL	MAGMA 2.12	MAGMA 2.13
10	5.43	6.03	5.49
1000	204	46.8	13.2

Pari: > 8000s for the first matrix.

Knapsack-type bases

Non trivial entries are $\log B$ bit long.

d	$\log B$	NTL	V2.12	V2.13	V2.13 Fast
10	100,000	37.6	6.69	5.16	2.99
100	10,000	344	269	134	42.1
150	5,000	$\infty^{1}, 3240$	4993	597	250

${ }^{1}$ NTL's LLL_XD loops forever: \Rightarrow LLL_RR.

Simult. Diophantine approximation

Dimension 76, non-trivial entries of ≈ 5000 bits.

NTL	V2.12	V2.13	V2.13 Fast
1142	$\infty ?$	76.5	42.8

4) Further improvements

Possible improvements for LLL

- Givens and Householder orthogonalisations?

Provable variant without the Gram matrix. Technical difficulty: computing a portion of the product of two integers.

- Low-level improvement of the integer operation "big + small \times big".

Other LLL-related routines

PowerRelations and IntegerRelations.
Coppersmith's method for the small roots of polynomials (the modular univariate case is already available).

- Schnorr's block-Korkine-Zolotarev algorithm.

