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Plan of the Talk

Reminders on the LLL algorithm.

How to use the new MAGMA LLL.

NTL versus MAGMA.

Further improvements.
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Quick bibliography

Lenstra-Lenstra-Lovász ’82.

Schnorr-Euchner ’94.

Nguyễn-Stehlé ’05.

Nguyễn-Stehlé ’06.
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1) Reminders on lattices
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Lattices are useful in many areas

Computer algebra.

Algorithmic number theory.

Computational group theory.

Linear integral relation detection.

Cryptanalysis.

Computer arithmetic.
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Euclidean lattices

Lattice = discrete subgroup of R
n.

L[bi] =
{

∑d
i=1 xibi, xi ∈ Z

}

,

represented by a d × n matrix.

If the bi’s are linearly independent, they are a
lattice basis.

Dimension: shared cardinality of the bases.

First minimum: λ(L) = min(‖b‖ : b ∈ L\{0}).

In this talk, d = n and L ⊂ Z
d.
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Gram-Schmidt orthogonalisation

b∗
1 = b1, b∗

i = bi −
∑i−1

j=1 µi,jb
∗
j , µi,j =

〈bi,b
∗

j 〉
‖b∗

j‖2 .

detL[bi] =
∏

‖b∗
i‖ is independent of the bi’s.
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Two main computational tasks

Given a basis of a d-dimensional lattice L,
compute a vector b1 ∈ L which is:

not very long as regard to λ(L).

not very long as regard to det(L)1/d.
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LLL reduction

A basis (b1, . . . ,bd) is (δ, η)-LLL-reduced if:
(1) ∀i > j, |µi,j| ≤ η.
(2) ∀i, δ · ‖b∗

i−1‖ ≤ ‖b∗
i + µi,i−1b

∗
i−1‖,

where δ ∈ (0.25, 1) and η ∈ (0.5,
√

δ).

(2) means: in (b1, . . . ,bi−2)
⊥, bi−1 is approx.

shorter than bi.

Often (δ, η) = (0.999, 0.501).
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Properties of LLL-reduced bases

‖b1‖ ≤
(

δ − η2
)−(d−1)/4 · (det L)1/d,

‖b1‖ ≤ (δ − η2)−(d−1)/2 · λ(L),

∏d
i=1 ‖bi‖ ≤ (δ − η2)−d(d−1)/4 · (detL),

∀j < i, ‖b∗j‖ ≤ (δ − η2)(j−i)/2 · ‖b∗i‖.
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The rational LLL algorithm

Input: (b1, . . . ,bd) linearly independent.
Output: A LLL-reduced basis of L[bi].
1.κ := 2. While κ ≤ d, do:
2. Make all the |µκ,i|’s smaller than η:
3. Compute the µκ,i’s.
4. For i from κ − 1 down to 1 do, if |µκ,i| ≥ η:
5. bκ := bκ − ⌊µκ,i⌉bi.
6. For j from 1 to i do µκ,j := µκ,j − ⌊µκ,i⌉µi,j.

7. If δ‖b∗

κ−1
‖ ≤ ‖b∗

κ + µκ,κ−1b
∗

κ−1
‖, then κ := κ + 1.

8. Else swap bκ−1 and bκ, κ := max(κ − 1, 2).
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The floating-point LLL

Classical LLL: Gram-Schmidt computations
done with rational numbers with huge
numerators and denominators.

fp-LLL: Gram-Schmidt computations done
with floating-point approximations with much
smaller mantissas.

To get a provable fp-LLL, one needs arbitrary
precision fp numbers and the Gram matrix of
the basis [Stehlé-Nguyễn ’05].
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LLL implementations

Fast LLL implementations rely on floating-point
computations, based on [Schnorr-Euchner ’94].

NTL.

MAGMA.

Pari GP.

LiDIA.

Maple, Mathematica, Gap.
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2) The new LLL routine of
MAGMA
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Main properties

Correctness.

Termination.

Reasonably fast
(in particular with the Fast option).

Works for linearly dependent vectors and
all symmetric matrices.
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Correctness

When Proof is true, the output basis is
(δ, η)-LLL-reduced.
MAGMA contains the only guaranteed fp-LLL.

Internally, δ and η are strengthened.

The output is not sorted by length anymore.

To obtain better timings than before, set Proof to
false, or use LatticeReduce.
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Main options
Warning:
the default variant is seldom the one you want.

LLL parameters δ and η (default: 0.75, 0.501).

SwapCondition. Siegel’s condition:

‖b∗
i+1‖2 ≥ (δ − η2) · ‖b∗

i‖2.

EarlyReduction. Vectors can be
size-reduced in advance.

Fast. The above parameters are chosen
automatically for you.
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You want a LLL-reduced basis

Keep the default variant.

Eventually set (δ, η) closer to (1, 1/2).

Eventually set Proof to false.
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You want the main LLL properties

Set SwapCondition to Siegel.

Eventually set EarlyReduction to true.

Eventually set Proof to false.
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You want a somehow reduced basis

Set Proof to false.

Activate the Fast option.
It will output a LLL-reduced basis for some
factors δ, η.

These factors will be given to you.
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3) Comparison of diverse
LLLs
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Compared software

MAGMA 2.12 and 2.13, NTL 5.4.

On a 2.4 GHz AMD Opteron.

Using GNU MP 4.2.1 and Gaudry’s patch,
for both NTL and MAGMA.

Using MPFR 2.2.0 for MAGMA.

All timings in seconds.

δ = 0.75, η = 0.501.
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Termination test in dimension 3







1 −1 0

2100 + 1 2100 − 1 0

2100 2100 − 1 1






.

NTL’s G_LLL_FP loops forever.

MAGMA 2.12’s LLL without UseGram and
UnderflowCheck: falls down to integral
method.

PARI: incorrect answer (2 weeks ago).
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Termination test in dimension 55

Worst-case for the correctness proof of
[Nguyễn-Stehlé ’05].

NTL’s LLL_FP and LLL_XD loop forever.

MAGMA 2.12’s LLL without UseGram:
falls down to integral method. 3.43s.

PARI: 2.67s.

MAGMA 2.13’s LLL: 0.014s.
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Uniform entries in dimension 1000

All entries uniformly chosen with log B bits.

log B NTL MAGMA 2.12 MAGMA 2.13
10 5.43 6.03 5.49

1000 204 46.8 13.2

Pari: > 8000s for the first matrix.
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Knapsack-type bases

Non trivial entries are log B bit long.

d log B NTL V2.12 V2.13 V2.13 Fast

10 100, 000 37.6 6.69 5.16 2.99

100 10, 000 344 269 134 42.1

150 5, 000 ∞1, 3240 4993 597 250

1NTL’s LLL_XD loops forever: ⇒ LLL_RR.
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Simult. Diophantine approximation

Dimension 76, non-trivial entries of ≈ 5000 bits.

NTL V2.12 V2.13 V2.13 Fast

1142 ∞? 76.5 42.8
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4) Further improvements
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Possible improvements for LLL

Givens and Householder orthogonalisations?

Provable variant without the Gram matrix.
Technical difficulty: computing a portion of
the product of two integers.

Low-level improvement of the integer
operation “big + small × big”.
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Other LLL-related routines

PowerRelations and IntegerRelations.

Coppersmith’s method for the small roots of
polynomials (the modular univariate case is
already available).

Schnorr’s block-Korkine-Zolotarev algorithm.
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