The New LLL Routine in the MAGMA Computational Algebra System

Damien Stehlé http://www.loria.fr/~stehle

University of Sydney/Université Nancy 1

Plan of the Talk

- Reminders on the LLL algorithm.
- How to use the new MAGMA LLL.
- NTL versus MAGMA.
- Further improvements.

Quick bibliography

- Lenstra-Lenstra-Lovász '82.
- Schnorr-Euchner '94.
- Nguyễn-Stehlé '05.
- Nguyễn-Stehlé '06.

1) Reminders on lattices

Lattices are useful in many areas

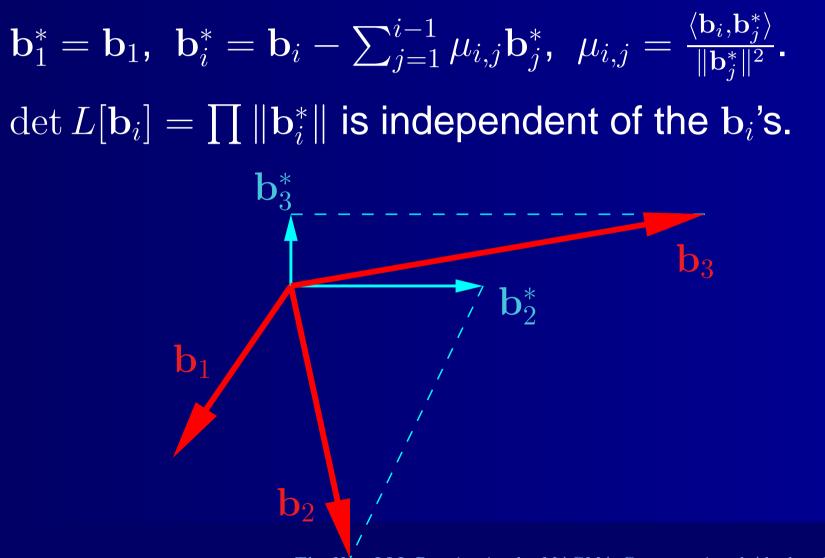
- Computer algebra.
- Algorithmic number theory.
- Computational group theory.
- Linear integral relation detection.
- Cryptanalysis.
- Computer arithmetic.

Euclidean lattices

- Lattice = discrete subgroup of \mathbb{R}^n .
- $L[\mathbf{b}_i] = \left\{ \sum_{i=1}^d x_i \mathbf{b}_i, x_i \in \mathbb{Z} \right\},$ represented by a $d \times n$ matrix.
- If the b_i's are linearly independent, they are a lattice basis.
- Dimension: shared cardinality of the bases.
- First minimum: $\lambda(L) = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \{0\}).$

In this talk, d = n and $L \subset \mathbb{Z}^d$.

Gram-Schmidt orthogonalisation



Two main computational tasks

Given a basis of a *d*-dimensional lattice *L*, compute a vector $\mathbf{b}_1 \in L$ which is:

- not very long as regard to $\lambda(L)$.
- not very long as regard to $det(L)^{1/d}$.

LLL reduction

- A basis $(\mathbf{b}_1, \dots, \mathbf{b}_d)$ is (δ, η) -LLL-reduced if: (1) $\forall i > j$, $|\mu_{i,j}| \leq \eta$. (2) $\forall i$, $\delta \cdot ||\mathbf{b}_{i-1}^*|| \leq ||\mathbf{b}_i^* + \mu_{i,i-1}\mathbf{b}_{i-1}^*||$, where $\delta \in (0.25, 1)$ and $\eta \in (0.5, \sqrt{\delta})$.
- (2) means: in $(\mathbf{b}_1, \ldots, \mathbf{b}_{i-2})^{\perp}$, \mathbf{b}_{i-1} is approx. shorter than \mathbf{b}_i .
- Often $(\delta, \eta) = (0.999, 0.501)$.

Properties of LLL-reduced bases

- $||b_1|| \le (\delta \eta^2)^{-(d-1)/4} \cdot (\det L)^{1/d}$,
- $\|b_1\| \leq (\delta \eta^2)^{-(d-1)/2} \cdot \lambda(L)$,

• $\Pi_{i=1}^{d} \|b_i\| \leq (\delta - \eta^2)^{-d(d-1)/4} \cdot (\det L),$ • $\forall j < i, \|b_j^*\| \leq (\delta - \eta^2)^{(j-i)/2} \cdot \|b_i^*\|.$

The rational LLL algorithm

Input: $(\mathbf{b}_1, \ldots, \mathbf{b}_d)$ linearly independent. **Output:** A LLL-reduced basis of $L[\mathbf{b}_i]$. 1. $\kappa := 2$. While $\kappa < d$, do: Make all the $|\mu_{\kappa,i}|$'s smaller than η : 2. Compute the $\mu_{\kappa,i}$'s. 3. 4. For *i* from $\kappa - 1$ down to 1 do, if $|\mu_{\kappa,i}| \ge \eta$: $\mathbf{b}_{\kappa} := \mathbf{b}_{\kappa} - |\mu_{\kappa,i}| \mathbf{b}_{i}$ 5. For j from 1 to i do $\mu_{\kappa,j} := \mu_{\kappa,j} - \lfloor \mu_{\kappa,i} \rfloor \mu_{i,j}$. 6. If $\delta \|\mathbf{b}_{\kappa-1}^*\| \leq \|\mathbf{b}_{\kappa}^* + \mu_{\kappa,\kappa-1}\mathbf{b}_{\kappa-1}^*\|$, then $\kappa := \kappa + 1$. 7. Else swap $\mathbf{b}_{\kappa-1}$ and \mathbf{b}_{κ} , $\kappa := \max(\kappa - 1, 2)$. 8.

The floating-point LLL

- Classical LLL: Gram-Schmidt computations done with rational numbers with huge numerators and denominators.
- *fp*-LLL: Gram-Schmidt computations done with floating-point approximations with much smaller mantissas.
- To get a provable *fp*-LLL, one needs arbitrary precision *fp* numbers and the Gram matrix of the basis [Stehlé-Nguyễn '05].

LLL implementations

Fast LLL implementations rely on floating-point computations, based on [Schnorr-Euchner '94].

- NTL.
- MAGMA.
- Pari GP.
- LiDIA.
- Maple, Mathematica, Gap.

2) The new LLL routine of MAGMA

Main properties

- Correctness.
- Termination.
- Reasonably fast (in particular with the Fast option).
- Works for linearly dependent vectors and all symmetric matrices.

Correctness

When Proof is true, the output basis is (δ, η) -LLL-reduced. MAGMA contains the only guaranteed *fp*-LLL.

- Internally, δ and η are strengthened.
- The output is not sorted by length anymore.

To obtain better timings than before, set Proof to false, or use LatticeReduce.

Main options

Warning:

the default variant is seldom the one you want.

- LLL parameters δ and η (default: 0.75, 0.501).
- SwapCondition. Siegel's condition:

 $\|\mathbf{b}_{i+1}^*\|^2 \ge (\delta - \eta^2) \cdot \|\mathbf{b}_i^*\|^2.$

- EarlyReduction. Vectors can be size-reduced in advance.
- Fast. The above parameters are chosen automatically for you.

You want a LLL-reduced basis

- Keep the default variant.
- Eventually set (δ, η) closer to (1, 1/2).
- Eventually set Proof to false.

You want the main LLL properties

- Set SwapCondition to Siegel.
- Eventually set EarlyReduction to true.
- Eventually set Proof to false.

You want a somehow reduced basis

- Set Proof to false.
- Activate the Fast option.
 It will output a LLL-reduced basis for some factors δ, η.
- These factors will be given to you.

3) Comparison of diverse LLLs

Compared software

- MAGMA 2.12 and 2.13, NTL 5.4.
- On a 2.4 GHz AMD Opteron.
- Using GNU MP 4.2.1 and Gaudry's patch, for both NTL and MAGMA.
- Using MPFR 2.2.0 for MAGMA.
- All timings in seconds.
- $\delta = 0.75, \eta = 0.501.$

Termination test in dimension 3

$$\begin{bmatrix} 1 & -1 & 0 \\ 2^{100} + 1 & 2^{100} - 1 & 0 \\ 2^{100} & 2^{100} - 1 & 1 \end{bmatrix}.$$

- NTL's G_LLL_FP loops forever.
- MAGMA 2.12's LLL without UseGram and UnderflowCheck: falls down to integral method.
- PARI: incorrect answer (2 weeks ago).

Termination test in dimension 55

Worst-case for the correctness proof of [Nguyễn-Stehlé '05].

- NTL's LLL_FP and LLL_XD loop forever.
- MAGMA 2.12's LLL without UseGram: falls down to integral method. 3.43s.
- PARI: 2.67s.
- MAGMA 2.13's LLL: 0.014s.

Uniform entries in dimension 1000

All entries uniformly chosen with $\log B$ bits.

$\log B$	NTL	MAGMA 2.12	MAGMA 2.13
10	5.43	6.03	5.49
1000	204	46.8	13.2

Pari: > 8000s for the first matrix.

Knapsack-type bases

Non trivial entries are $\log B$ bit long.

d	$\log B$	NTL	V2.12	V2.13	V2.13 Fast
10	100,000	37.6	6.69	5.16	2.99
100	10,000	344	269	134	42.1
150	5,000	$\infty^{1}, 3240$	4993	597	250

¹NTL's LLL_XD loops forever: \Rightarrow LLL_RR.

Simult. Diophantine approximation

Dimension 76, non-trivial entries of ≈ 5000 bits.

NTL	V2.12	V2.13	V2.13 Fast
1142	$\infty?$	76.5	42.8

4) Further improvements

Possible improvements for LLL

- Givens and Householder orthogonalisations?
- Provable variant without the Gram matrix.
 Technical difficulty: computing a portion of the product of two integers.
- Low-level improvement of the integer operation "big + small × big".

Other LLL-related routines

- PowerRelations and IntegerRelations.
- Coppersmith's method for the small roots of polynomials (the modular univariate case is already available).
- Schnorr's block-Korkine-Zolotarev algorithm.