Irreducible Constituents of Monomial Characters

Prof. Andrea Previtali
Università dell’Insubria-Como, Italy
andrea.previtali@uninsubria.it
http://scienze-como.uninsubria.it/previtali

Berlin, 1. August 2006
Cosets and Permutation Representation

$H :=$ a subgroup of finite index, say n, of a group G;

$T :=$ a right transversal of H in G, thus $G = \bigsqcup_{t \in T} Ht$;

$(t \cdot g) :=$ unique element in $T \cap Htg$;

$G/\text{Core}_G(H)$ embeds into $\text{Sym}(n)$;

We assume that G be a subgroup of $\text{Sym}(n)$;
Double Cosets, Orbitals, and Suborbits

$T \times T$ becomes G-set via $(s, t) \cdot g := (s \cdot g, t \cdot g)$;

The G-orbits on $T \times T$ are called orbitals;

$X := (T \times T) / / G$ a set of representatives of (H, H)-cosets;

$$(1, x) \cdot G \leftrightarrow x \cdot H \leftrightarrow HxH$$

define bijections between orbitals, suborbits and (H, H)-cosets;
Linear and Monomial Representations

$W := \text{one-dimensional } H\text{-module;}$

$\mu := \text{linear character of } H \text{ afforded by } W$

\[wh := \mu(h)w. \]

$K := \ker \mu \text{ and } \ell := |H : K|;$

$F := \mathbb{Q}(\zeta_{\ell})$, where ζ_{ℓ} is a primitive ℓ-th root of $1 \in \mathbb{C};$
$V := \bigoplus_{t \in T} W \otimes t$ is the FG-module affording the monomial representation μ^G;

$$M(g)_{st} := \mu(s g (s \cdot g)^{-1}) \delta_{s \cdot g, t},$$

where $s, t \in T$, $g \in G$, is the associated monomial matrix;
Centralizer Algebra

Definition: The orbital \((1, x) \cdot G\) is \(\mu\)-central if \([H \cap H^x, x^{-1}] \leq \ker \mu\).

Theorem: (P. 2005) \(\text{End}_G(V) = \bigoplus_{\Lambda} Fc_{\Lambda}\), where \(\Lambda\) varies in the family of all \(\mu\)-central orbitals, and \(c = c_{\Lambda}\) is a matrix such that:

1. \(\text{Supp}(c) = \Lambda\);

2. if \(\Lambda = (1, x) \cdot G, x \in X\), then \(c_{(1,x) \cdot g} = \rho_{1x}(g)\), where \(\rho_{st}(g) := \mu(tg(t \cdot g)^{-1}(s \cdot g)g^{-1}s^{-1}), s, t \in T, g \in G..\)
Adjacency Algebra

If $\mu = 1_H$, the trivial character of H, then V becomes the permutation module P affording the permutation character $(1_H)^G$.

$a = a^\Lambda$ is the adjacency matrix of the orbital Λ, that is, $a_{st} = 1$ iff $(s, t) \in \Lambda$, $a_{st} = 0$ otherwise.

Corollary: (Higman, Bannai-Î­to, Michler-Weller) $\text{End}_G(P) = \bigoplus_\Lambda \mathbb{Q} a^\Lambda$.
Generalized Intersection Numbers

Reorder orbitals so that \(\mu \)-central occur first and set \(c_i := c_{\wedge i} \);

We call the structure constants \(p^k_{ij} \) with respect to the basis \((c_1, \ldots, c_r) \) of
\(C := \text{End}_G(V) \) the generalized intersection numbers

\[
c_i c_j = \sum_{k=1}^{r} p^k_{ij} c_k.
\]

Theorem: \(p^k_{ij} \) may be efficiently obtained as a sum of \(\mu \)-values depending
on the \(G \)-structure of \(T \times T \). Moreover, \(p^k_{i1} = \delta_{ik} \) and \(p^k_{1j} = \delta_{jk} \). In
particular, \(c_1 \) is the identity matrix and the first row of \(c_i \) is the \(i \)-th standard
vector.
Corollary: When $\mu = 1_H$, $p_{i,j}^k$ is an intersection number and equals

$$|x_i \cdot H \cap x_j' \cdot H x_k|,$$

where $x_j^{-1} \in H x_j' H$.

and Intersection Numbers
Reducing Dimensions: Episode I

First reduction: \(\sigma : c_j \longrightarrow (p_{ij}^k) \) is the right regular representation for \(C = \text{End}_G(V) \).

\(\sigma \) reduces the size of matrices from \(n = |G : H| \) to \(r \), the number of \(\mu \)-central orbitals.

Example: For \(G = \text{PGL}_2(73) \), \(P \in \text{Syl}_{73}(G) \), \(H = N_G(P) \), \(n = 2628 \) and \(r = 36 \).
Reducing Dimensions: Episode II

Using the special shape of $\sigma(c_i)$ we obtain heuristically a set of generators for $\sigma(C)$ (as an algebra) in $\lceil \log_2(r) \rceil$ steps.

$Z_0 := Z(\sigma(C))$, the center of $\sigma(C)$, can be efficiently obtained solving a linear system with a small number of equations.

Second reduction: Let $\tau : Z_0 \to (F)_t$ be the right regular representation for Z_0, where $t = \dim_F(Z_0)$.

We will analyze $Z = \tau(Z_0)$.
One-generator Algebras

Definition: We say A is a one-generator algebra over a field E if $A = E[a]$ for some $a \in A$.

Theorem: (Chillag 1995 P. 2005) Let A be a commutative, semisimple, finite-dimensional E-algebra, E a separable field. If $|E| > \dim_E(A)$, then A is a one-generator algebra.
Probabilistic Search

Corollary Let $Z = \tau(Z_0)$, then $Z = F[z]$, for some z.

z is obtained using a probabilistic approach.

Theorem: Let F be an infinite field, Z a semisimple, finite dimensional, commutative algebra over F, z_1, \ldots, z_t an F-basis for Z. Then $z = \sum_{i=1}^{t} a_i z_i$ satisfies $Z = F[z]$ unless $(a_1, \ldots, a_t) \in \mathbb{Z}^t$ lies in the union of $\binom{t}{2}$ hyperplanes $H_{ij} \leq E^t$, where E is a splitting field for Z.
Central Primitive Idempotents

Theorem: Let \(Z = \tau(Z(\sigma(C))) \leq (F)_t \) be generated by \(z \) and \(E = \mathbb{Q}(\zeta_e) \), where \(|\zeta_e| = \exp(G) \). Then

(a) \(z \) admits distinct eigenvalues \(\lambda_1, \ldots, \lambda_t \) in \(E^* \), where \(t = \dim_F(Z) \).

(b) Let \(L_i(x) \) be the Lagrange polynomials relative to \(\lambda_1, \ldots, \lambda_t \), then \(L_i(z) \) are the central primitive idempotents of \(Z \).

(c) Let \(f_i = (\chi_i, \mu^G) \) be the multiplicity of \(\chi_i \) in \(\mu^G \). Then \(f_i^2 = \text{rank}(\hat{e}_i) \), where \(\hat{e}_i = L_i(\tau^{-1}(z)) \) is a primitive central idempotent for \(\sigma(C) \).

(d) Let \(\hat{e}_i = \sum_{j=1}^r a_{ij} \sigma(c_j) \), where \(c_j \) are the \(\mu \)-adjacency matrices. Then \(a_{ij} \) is the \((1, j)\)-entry of \(\hat{e}_i \). In particular, \(a_{ij} \in E \).
Extended Gollan-Ostermann numbers

Definition: Given a μ-central orbital Λ_j and $g \in G$ we define the extended Gollan-Ostermann number

$$p_j(g) = \sum_{u \in T} \mu(x_j h u g (h u)^{-1}),$$

where $u \in T$ satisfies $x_j \cdot hug = 1 \cdot u$, for some $h \in H$.

Irreducible Characters values

Theorem: Let \(e_i = L_i(\sigma^{-1}\tau^{-1}(z)) = \sigma^{-1}(\bar{e}_i) \), then the \(e_i \)'s are the pairwise orthogonal primitive central idempotents for \(EM(G) \). Moreover, \(e_i = \sum_{j=1}^{t} a_{ij}c_j \) for some \(a_{ij} \in E \). Let \(p_j(g) \) be the extended Gollan-Ostermann numbers. If \(\chi_i \in \text{Irr}(G|\mu^G) \) corresponds to \(e_i \), then

\[
\chi_i(g) = \frac{1}{f_i} \sum_{j=1}^{r} a_{ij}p_j(g),
\]

where \(f_i^2 = (\chi_i, \mu^G)^2 = \text{rank}(\bar{e}_i) \). In particular, \(d_i = \chi_i(1) = \frac{na_{i1}}{f_i} \).

Corollary: When \(\mu = 1_H \) we obtain an algorithm by Michler and Weller (2002).

Corollary: When \(G \) is finite and \(H = 1 \) we obtain an algorithm due to Frobenius and Burnside.
Modular reduction

Unfortunately arithmetic in the cyclotomic field \(E = \mathbb{Q}(\zeta_e) \) might be expensive if \(e = \text{Exp}(G) \) is big;

Resort to a modular à la Dixon approach;

\(p \) a prime congruent to 1 (mod \(e \)) and \(p > \max(2n, t) \);

\(L := \mathbb{F}_p \) and \(\varepsilon_e \in L^* \) such that \(|\varepsilon_e| = e \);

Build homorphism \(\theta \) from \(\mathbb{Z}[\zeta_e] \) into \(L \) via

\[\theta(f(\zeta_e)) = f(\varepsilon_e). \]
Set $M_L(g) := \theta(M(g))$, where we extend θ to matrices and M is the monomial representation;

Using a theorem of Brauer and Nesbitt we may express the modular reduction $\theta(\chi_i(g))$ as in the cyclotomic case;

Knowing the power maps in G we may lift these modular values uniquely into E.