Fields of definition of building blocks

MAGMA 2006 - Berlin

Jordi Quer
Universitat Politècnica de Catalunya
jordi.quer@upc.edu
Modular curves and modular abelian varieties

\[\Gamma_1(N) = \left\{ M \in \text{SL}_2(\mathbb{Z}) \left| \begin{array}{c} M \equiv \begin{pmatrix} 1 & \ast \\ 0 & 1 \end{pmatrix} \pmod{N} \end{array} \right. \right\}, \]

\[X_1(N) = \Gamma_1(N) \backslash \mathbb{H}^*, \quad J_1(N) = \text{Jac}(X_1(N)). \]

\(J_1(N) \) is an abelian variety defined over \(\mathbb{Q} \).

Problem (Taniyama, 1955):

Decompose \(J_1(N) \) into its simple components.

Let’s call the factors (up to isogeny) of the modular jacobian \(J_1(N) \) **modular abelian varieties**.
Applications of modularity:

- Solvability of certain Diophantine equations (Fermat);

- analytic continuation and functional equation for L-series;

- modular parametrization + Heegner points = partial results on Birch and Swinnerton-Dyer;

- ...
Decomposition over \mathbb{Q} of $X_1(N)$

Given a newform

$$f = \sum a_nq^n \in S_2^{\text{new}}(N, \varepsilon),$$

Shimura constructs a \mathbb{Q}-simple abelian variety A_f/\mathbb{Q} as a quotient of $J_1(N)$. Then, one has the decomposition

$$J_1(N) \sim_\mathbb{Q} \prod A_{ef}^e,$$

the product ranging over all newforms of level dividing N, and the factors of multiplicity one corresponding to those of exact level N.

Important property: $E = \text{End}_\mathbb{Q}(A_f) \otimes \mathbb{Q}$ is a number field of degree $[E : \mathbb{Q}] = \dim A_f$, the maximum allowed by the dimension of A_f.

Conjecturally, the modular \mathbb{Q}-simple varieties A_f are characterized, among all \mathbb{Q}-simple abelian varieties over \mathbb{Q}, **only by the structure of their \mathbb{Q}-endomorphism algebra**
Computational aspects

Magma can perform lots of explicit computations with modular forms and modular abelian varieties, thanks to several packages (ModSym, ModFrm, ModAbVar) written by **William Stein**.

All the computations make extensive use of the theory of **modular symbols** (Manin, Birch, Merel, ...).

Given $N \geq 1$, $k \geq 2$ and $\varepsilon: (\mathbb{Z}/N\mathbb{Z})^* \to \mathbb{C}^*$ there are functions computing all newforms of that level, weight and character up to reasonable bounds.

The bottleneck seems to be to do linear algebra in a vector space of dimension growing with N over the cyclotomic field generated over \mathbb{Q} by the values of ε.
Decomposition over $\overline{\mathbb{Q}}$

Every A_f factors over $\overline{\mathbb{Q}}$ as a power of an absolutely simple variety B_f (only determined up to isogeny)

$$A_f \sim_{\overline{\mathbb{Q}}} B_f^n,$$

and there are three possibilities (Shimura, Ribet-Pyle):

CM B_f is an elliptic curve with **complex multiplication** ($\Leftrightarrow A_f$ has complex multiplication),

RM B_f has **real multiplication** by a totally real field F of degree $[F : \mathbb{Q}] = \dim B_f$, or

QM B_f has **quaternionic multiplication** by a (division) quaternion algebra \mathcal{D} over a totally real field F of degree $[F : \mathbb{Q}] = \frac{1}{2} \dim B_f$.

The varieties B_f are known as **building blocks**, and conjecturally they are characterized **only by the structure of their endomorphism algebras**.

The Magma packages by William Stein contain a few functions giving some arithmetical information on the B_f (e.g. the “inner twists”) but there is still a lot to be done compared with the case of the A_f.

Example of a computational nontrivial task: Elaborate a table “of Cremona’s type” with equations and arithmetic information of all the one-dimensional B_f (known as elliptic \mathbb{Q}-curves) up to a certain level $N \leq \text{bound}$.

Fields of definition of B_f

The variety B_f is only determined up to isogeny. One may ask about the fields of definition of the varieties in the isogeny class.

We say that a number field K is a field of definition for the building block B_f if there exists an abelian variety B/K, with all elements of $\text{End}(B)$ also defined over K, and such that $B \sim_{\mathbb{Q}} B_f$.

Example: If B_f is an elliptic curve with complex multiplication by an order of an imaginary quadratic field F, then there exists a smallest field of definition for B_f, namely, the Hilbert class field of the complex multiplication field F.
Let B_f be a **non-CM building block**. Then (Ribet-Pyle) there exists a number field K_P which is abelian of exponent 2

$$K_P = \mathbb{Q}(\sqrt{t_1}, \sqrt{t_2}, \ldots, \sqrt{t_r})$$

and an element $[c_\pm] \in \text{Br}(\mathbb{Q})[2]$ such that a number field K is a field of definition for B_f if, and only if,

$$K_P \subseteq K \quad \text{and} \quad K \text{ splits the element } [c_\pm]$$

Theorems. If B_f is a \mathbb{Q}-curve (Elkies) or, more generally, it has odd dimension (Ribet) then K_P splits $[c_\pm]$, and hence K_P is the smallest field of definition for B_f.

Question. What happens for even-dimensional building blocks?
A package for building blocks

The new version 2.13 of Magma contains functions providing some information for building blocks. For a newform f, the following can be computed:

1. The structure of $\text{End}(B_f) \otimes \mathbb{Q}$, given by the center F and the Brauer class in $\text{Br}(F)[2]$. In particular one knows to which of the three types (CM, RM or QM) the variety B_f belongs to.

2. The field K_P and the element $\text{Res}_{\mathbb{Q}}^{K_P} [c_\pm]$, giving the obstruction to K_P being a field of definition (for non-CM).

3. A function that for a given N and ε gives all the non-CM newforms $f \in S_2^{\text{new}}$ having bounded degree of $[F : \mathbb{Q}]$ without needing to compute all the newforms of such type.
Using this package a table has been built containing information for all newforms $f \in S_2^{\text{new}}$ with

$$N \leq 500, \quad \varphi(\text{ord}(\varepsilon)) \leq 12, \quad [F : \mathbb{Q}] \leq 4$$

The table contains many examples of even-dimensional building blocks B_f that cannot be defined over the field B_f.

This are statistics on the number of non-CM varieties depending on their dimension and structure of endomorphism algebras:

<table>
<thead>
<tr>
<th>$[F : \mathbb{Q}]$</th>
<th>total</th>
<th>RM cases</th>
<th>QM cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2610</td>
<td>2426</td>
<td>184</td>
</tr>
<tr>
<td>2</td>
<td>1613</td>
<td>1555</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>739</td>
<td>695</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>647</td>
<td>619</td>
<td>28</td>
</tr>
<tr>
<td>total</td>
<td>5609</td>
<td>5295</td>
<td>314</td>
</tr>
</tbody>
</table>
The number of non-CM varieties B_f that cannot be defined over K_P is:

$$[F : \mathbb{Q}] \quad \text{End}(B_f) \otimes \mathbb{Q} = F \quad \text{End}(B_f) \otimes \mathbb{Q} \neq F$$

<table>
<thead>
<tr>
<th>$[F : \mathbb{Q}]$</th>
<th>$\text{End}(B_f) \otimes \mathbb{Q} = F$</th>
<th>$\text{End}(B_f) \otimes \mathbb{Q} \neq F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>121</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>0</td>
</tr>
</tbody>
</table>

The RM example with smallest level is a surface and occurs in level 33.

The QM example with smallest level is also a surface and occurs in level 28; it is described in the Magma handbook.
Explicit computations

The field $E = \text{End}_\mathbb{Q}(A_f) \otimes \mathbb{Q} = \mathbb{Q}(\{a_n\}_{n \geq 1})$ comes from the computation of the newform f.

The building block B_f has CM by (an order of) the imaginary quadratic field F if, and only if,

$$a_p = \chi_F(\text{Frob}_p)a_p \quad \forall p \nmid N,$$

with $\chi_F : G_\mathbb{Q} \to \{\pm 1\}$ the quadratic character attached to F. It is enough to test the identity for $p \leq \frac{1}{6}\psi(N^2)$.

In the non-CM case, the field $F = Z(\text{End}(B_f) \otimes \mathbb{Q})$ is

$$F = \mathbb{Q}(\{a_p^2/\varepsilon(p)\}_{p \mid N})$$

In practice one adjoins values until obtaining an extension F/\mathbb{Q} of the right degree using the fact that the degree $[E : F]$ is the number of inner twists of the newform f (warning: see the remarks about inner twist computations).
Let $\Psi \subset \text{Hom}(G_\mathbb{Q}, \{\pm 1\})$ be the group of quadratic characters ψ satisfying
\[\sqrt{a_p^2/\varepsilon(p)} = \psi(\text{Frob}_p)\sqrt{a_p^2/\varepsilon(p)}, \quad \forall p \nmid N\]
(it is enough to check the identity for $p \leq \frac{1}{6}\psi(N^2)$). Let ψ_1, \ldots, ψ_r be a basis of this group.

Let $t_i \in \mathbb{Q}^*$ be rational numbers such that $\mathbb{Q}(\sqrt{t_i}) = \mathbb{Q}^{\ker \psi_i}$.

Let p_i be primes with $a_{p_i} \neq 0$ and $\psi_i(p_j) = (-1)^{\delta_{ij}}$ (Tsebotarev).

Let $f_i = a_{p_i}^2/\varepsilon(p_i) \in F^*$.

Let $[c_\varepsilon] \in \text{Br}(\mathbb{Q})[2] \simeq H^2(G_\mathbb{Q}, \{\pm 1\})$ be the cohomology class of the 2-cocycle
\[c_\varepsilon(\sigma, \tau) = \sqrt{\varepsilon(\sigma)}\sqrt{\varepsilon(\tau)}\sqrt{\varepsilon(\sigma\tau)}^{-1}\]
Then (Quer)

1. The Brauer class of \(\text{End}(B_f) \otimes \mathbb{Q} \) in \(\text{Br}(F)[2] \) is

\[
\text{Res}^F_Q[c_\varepsilon]\left(\frac{t_1, f_1}{F}\right) \cdots \left(\frac{t_r, f_r}{F}\right)
\]

2. The field \(K_P \) is \(\mathbb{Q}(\sqrt{t_1}, \ldots, \sqrt{t_r}) \)

3. The obstruction to define \(B_f \) over \(K_P \) is

\[
\text{Res}^K_P[c_\varepsilon]
\]
Remarks:

For a number field K the elements of $\text{Br}(F)[2]$ are completely determined by the (finite, even) set of ramified primes of the corresponding quaternion algebra.

The computation of elements of $\text{Br}(F)[2]$ or of $\text{Br}(K_P)[2]$ is done with functions special for the cases we consider. The new Magma version 2.13 contains John Voights’s new package that does these computations in general.

The bound $\frac{1}{6} \psi(N^2)$ is replaced for $N > 100$ by the unproved (but probably true) bound $15 + N/2$. See also comments on the W. Stein’s implementation of the inner twist computation.