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Pairings

Let G1, G2, GT be abelian groups. A pairing is a non-degenerate
bilinear map e : G1×G2 → GT .

Bilinearity:
• e(g1 + g2,h) = e(g1,h)e(g2,h),
• e(g,h1 + h2) = e(g,h1)e(g,h2).

Non-degenerate:
• x 7→ e(g,x) injective, x 7→ e(x,h) injective for all g 6= 1, h 6= 1.

Examples:
• Scalar product on euclidean space 〈·, ·〉 : Rn×Rn → R.
• Weil- and Tatepairings on elliptic curves and abelian varieties.

Florian Hess 3 Magma 2006 August 2, 2006



What are pairings good for?

Everything which has do with “linear algebra”:
• Checking for linear independence or dependence,
• Solving for linear combinations g = ∑i λigi,
• ...

Of interest here: Many applications in cryptography
• Identity based cryptography,
• Pairing based cryptography.

Some basic requirements on pairings in cryptography:
• Group laws of G1, G2, GT and pairing easy to compute.
• Hard DLP in G1, G2, GT .
• Group orders should be finite.
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Suitable pairings

Weil- and Tatepairings on elliptic curves and Jacobians of curves of
genus > 1 over finite fields.

These are the to date only known suitable pairings.

Main issues:
• Existence
• Efficiency
• Security
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Elliptic Curves

Base field Fq with q = pr.

E elliptic curve E defined over Fq.
• Point sets E(Fqk) are abelian groups.
• E(Fqk)[`] subgroup of points of order `.
• Point at infinity ∞ ∈ E(Fq) is neutral element.

Assume
• exists subgroup E(Fq)[`] of large prime order ` 6= q.

• embedding degree is k, that is ` || (qk −1) and k minimal.

Then E(Fqk)[`] ∼= Z/`Z×Z/`Z and µ` ⊆ F×
qk.
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Tate pairing

The Tate pairing 〈·, ·〉` : E(Fqk)[`]×E(Fqk)/`E(Fqk) → F×
qk/(F×

qk)
` is

defined as follows.

Let P ∈ E(Fqk)[`] and fn,P ∈ Fqk(E) with ( fn,P) = n((P)− (∞))− ((nP)− (∞)).
Let Q ∈ E(Fqk). Choose R ∈ E(Fqk) with {Q + R,R}∩{P,∞} = /0.

Then 〈P,Q〉` = f`,P(Q + R)/ f`,P(R) · (F×
qk)

`.

The reduced Tate pairing t` : E(Fqk)[`]×E(Fqk)[`] → µ` is defined

as t`(P,Q) = 〈P,Q〉`(qk−1)/`.
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Weil pairing

The Weil pairing e` : E(Fqk)[`]×E(Fqk)[`] → µ` is defined as follows.

Let P,Q ∈ E(Fqk)[`] and ( f`,P/ f`,Q)(∞) = 1.

Then e`(P,Q) =

{

1 for P = Q or P = ∞ or Q = ∞
(−1)` f`,P(Q)/ f`,Q(P) else.

The Weil pairing is non degenerate since E(F̄q)[`] ⊆ E(Fqk).
The property e`(P,P) = 1 is useful for subgroup membership testing.

We have e`(P,Q)(qk−1)/` = t`(P,Q)/t`(Q,P).
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Endomorphism ring
Endomorphism ring End(E).
• πq Frobenius endomorphism (x,y) 7→ (xq,yq).
• [m] multiplication-by-m endomorphism.

• Z[πq] ⊆ End(E), π2
q− tπq + q = 0, |t| ≤ 2

√
q.

The Frobenius πq has two eigenspaces in E(Fqk)[`] for the
eigenvalues 1,q.

Let P,Q ∈ E(Fqk)[`] with πq(P) = P and πq(Q) = qQ.

Then E(Fqk)[`] = 〈P〉×〈Q〉 und P ∈ E(Fq)[`].

E ordinary if End(E) commutative, else E supersingular.
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Pairing characteristics

More properties:
• 〈P,P〉` = 〈Q,Q〉` = 1, 〈P,Q〉` 6= 1.

• Endomorphism Tr = c∑k−1
i=0 πi

q with kc ≡ 1 mod ` yields surjective
projection 〈P〉×〈Q〉 → 〈P〉 with kernel 〈Q〉 (trace zero subgroup).

A distortion map for T = λP + µQ 6= 0 is ψ ∈ End(E) with ψ(T ) 6∈ 〈T 〉.
Tr is a distortion map if λ 6= 0 and µ 6= 0.
A distortion map exists for T = P,Q if and only if E is supersingular.

Can choose groups G1 and G2 for pairing according to needs:
• Hashing possible
• Short representations
• Homomorphisms between groups
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Pairing characteristics

Type 1: Supersingular curve with distortion map Q = ψ(P).
• G1 = G2

Type 2: Ordinary curve with G1 = 〈P〉, G2 = 〈λP + µQ〉, trace map.
• G1 6= G2 with one-way homomorphism G2 → G1

Type 3: Ordinary curve with G1 = 〈P〉, G2 = 〈Q〉.
• G1 6= G2 no homomorphism

More detailed discussion in Galbraith, Paterson, Smart and Smart,
Vercauteren.
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Pairing parameters

Most important parameter: Embedding degree k.

DLP security in E(Fq) grows like e1/2logq

DLP security in F×
qk grows like ec(k logq)1/3

.

Should be balanced, hence k ≈ (logq)2/3.

Symm ECC RSA k

80 160 1024 6
128 256 3072 12
256 512 15360 30
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Pairing Constructions

Supersingular curves k ∈ {2,3,4,6}.

MNT conditions on q, `, t = q + 1−#E(Fq) and k:
• q + 1− t = c` with c small (e.g. c = 1).

• φk(q) ≡ 0 mod ` (implies qk −1 ≡ 0 mod `).
• q prime power, ` prime, |t| ≤ 2

√
q.

• 4q− t2 = D f 2 with D small for CM method.
• ρ = log(q)/ log(`) should be as small as possible (e.g. ≈ 1).

Finding solutions for arbitrary k with ρ ≈ 2 by clever searching
algorithms is fairly easy.

Luca-Shparlinski: For ρ ≈ 1 solutions are very scarse!

Florian Hess 15 Magma 2006 August 2, 2006



Pairing Constructions
Ordinary curves via CM methods:
• MNT curves ρ = 1 and k ∈ {3,4,6}.
• Brezing-Weng ρ = 5/4 and k = 8, k = 24.

Also ρ ≤ 5/4 for prime k ≥ 13.
• Freeman ρ = 1 and k = 10.
• Barreto-Naehrig curves ρ = 1 and k = 12.
• Duan-Cui-Chan various other higher values.

Given k, solutions to q, ` can often be found as
parametric families q = q(z), ` = `(z).

k q t

3 12z2−1 −1±6z
4 z2 + z + 1 −z or z + 1
6 4z2 + 1 1±2z
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Barreto-Naehrig curves

Let

• p(z) := 36z4 + 36z3 + 24z2 + 6z + 1

• t(z) := 6z2 + 1
• `(z) := p(z) + 1− t(z).

Then φ12(p(z)) ≡ 0 mod `(z) and 4p(z)− t(z)2 = 3(6z2 + 4z + 1)2.

Construction of BN-curve:
• Find x such that p(±x) and `(±x) are primes.

• Check #E(Fp) = `(±x) for randomly chosen E : y2 = x3 + b, b ∈ Fp.
• Then E satisfies all conditions and k = 12.

No CM construction necessary, suitable E is found very fast.
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Barreto-Naehrig curves
Why does this work?

Let ζ be primitive 6-th root of unity.

Observations:

• Z[ζ] is the maximal order of Q(
√
−3) of discriminant −3.

• There is E/Fp(z) with trace t(z) and End(E) = Z[ζ] by CM.
• Elliptic curve E/Fp(z) in SWF has automorphism of order 6 iff

E : y2 = x3 + b. These curves are ordinary.
• There are 6 isogeny classes of E/Fp(z) with End(E) = Z[ζ].

Existence of E and termination of the algorithm after six tries on
average follows from the observations.

The particular structure of the BN-curves has further advantages.
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Classical Tate pairing
Standard reduced Tate pairing t` : G1×G2 → GT with
G1 = 〈P〉, G2 = 〈Q〉 and GT = µ`.

First improvement:

• t`(P,Q) = ( f`,P(Q + R)/ f`,P(R))(qk−1)/` = f`,P(Q)(qk−1)/`.

Miller’s algorithm for evaluating Miller functions f`,P(Q):
• Requires a point multiplication `P.
• Requires ≈ 2log2(`) multiplications/squarings in Fqk.
• Requires ≈ log2(`) divisons involving x(Q).

Second improvement:
• Adapt the base in Miller’s algorithm.
• If x(Q) is in proper subfield of Fqk, then omit all divisions.
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Classical Tate pairing

Third improvement:
• Exploit low hamming weight group orders in Miller’s algorithm.
• Exploit special form of exponent in final powering.

In the following some new improvements for ordinary elliptic curves.
Joint work with Smart and Vercauteren, generalises the Eta pairing of
Barreto, Galbraith, O’hEigeartaigh and Scott.

Yields shortening of the loop length in Miller’s algorithm, while
extending the field of definition of P.

• Loop length now between `1/φ(k) and
√

q.
• Field of definition of P between Fqk/6 and Fqk/2.
• Improvement of up to a factor of 6 in our examples.
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Ate pairing

Use reduced Tate pairing t` : G2×G1 → GT with
G1 = 〈P〉, G2 = 〈Q〉 and GT = µ`.

First improvement:

• t`(Q,P) = ( f`,Q(P + R)/ f`,Q(R))(qk−1)/` = f`,Q(P)(qk−1)/`.

Proof: Have e`(P,Q)(qk−1)/` = ( f`,P(Q)/ f`,Q(P))(qk−1)/` = t`(P,Q)/t`(Q,P)
and t`(P,Q) = f`,P(Q)(qk−1)/`. Hence t`(Q,P) = f`,Q(P)(qk−1)/`. �

Theorem: Let T = t −1 with #E(Fq) = q + 1− t and T k 6= 1.
Then t̂`(Q,P) = fT,Q(P)(qk−1)/` is a pairing.

We call t̂`(Q,P) the Ate pairing (why?).
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Ate pairing

Theorem: Let T = t −1 with #E(Fq) = q + 1− t and T k 6= 1.
Then t̂`(Q,P) = fT,Q(P)(qk−1)/` is a pairing.

Proof: Let N = gcd(T k −1,qk −1), T k −1 = LN. Since q = T mod `, we
have `||N and ` - L.

t`(Q,P)L = f`,Q(P)L(qk−1)/` = fN,Q(P)L(qk−1)/N = fLN,Q(P)(qk−1)/N

= fT k−1,Q(P)(qk−1)/N = fT k,Q(P)(qk−1)/N.

Now fT k,Q = f T k−1

T,Q f T k−2

T,T Q · · · fT,T k−1Q and T Q = πq(Q) and fT,πq(Q) = f σ
T,Q.

We obtain fT k,Q(P) = fT,Q(P)T k−1+T k−2q+···+qk−1
and

t`(Q,P)L = fT,Q(P)c(qk−1)/N with c = T k−1 + T k−2q + · · ·+ qk−1.

Since LHS has order ` and cofactors are not divisible by ` we get
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Ate pairing

Proof (ctd).

t`(Q,P)d = fT,Q(P)(qk−1)/` = t̂`(Q,P) for some d 6≡ 0 mod `.

Since t` is a pairing, t̂`(Q,P) is also a pairing. �
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Twists

Let E ′ be another elliptic curve defined over Fq.
We call E ′ a twist of E of degree d if there is an
isomorphism ψ : E ′ → E defined over Fqd, and d is minimal.

A twisting isomorphism ψ defines
• a vector space isomorphism E ′(Fqd)[`] → E(Fqd)[`].

• a ring isomorphism End(E ′) → End(E), φ 7→ ψφψ−1.

• carries the qd-power Frobenius of E ′ to that of E,
hence ψπ′d

q ψ−1 = πd
q.
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Twists and modified Ate pairing

Assume
• E ordinary, k = ed and E has twist E ′ over Fqe of degree d > 1,

• twisting isomorphism ψ : E ′ → E, Q′ = ψ−1(Q).

Then E ′ and ψ can be chosen such that E ′(Fqe)[`] = 〈Q′〉.

Proof: Choose γ ∈ AutK(E) with γπe
q(Q) = Q. There is E ′ and ψ with

ψπ′
qeψ−1 = γπe

q for π′
qe Frobenius on E ′. Then π′

qe(Q′) = Q′ and
Q′ ∈ E ′(Fqe)[`]. Since ` - (qe−1), E ′(Fqe)[`] = 〈Q′〉. �

Modified Ate pairing t̂ ′` : G′
2×G1 → GT

with G′
2 = 〈Q′〉, G1 = 〈P〉, GT = µ` and t̂ ′`(Q

′,P) = t̂`(ψ(Q′),P).

Advantages: Runtime and bandwidth savings.
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Example

The BN curves.

• E : y2 = x3 + b over Fp with p ≡ 1 mod 6.
• #E(Fp) = ` and k = 12.

• φ : (x,y) 7→ (ζ2x,ζ3y) for ζ ∈ µ6, hence E has twist E ′ of degree 6.

• E ′ : µy2 = λx3 + b with λ ∈ Fp2\(Fp2)3 and µ ∈ Fp2\(Fp2)2.

• E ′ 6= E, ψ : E ′ → E, ψ(x,y) = (λ1/3x,µ1/2y).

Hence compression factor E/Fp12 versus E ′/Fp2 is 6.
Loop length is (1/2) log2(`).
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Security issues

Assume for simplicity e : G×G → GT .

Group sizes G and GT must be large enough to withstand
attacks on DLP.
Pairing must be hard to invert (find x,y in e(x,Q) = z and e(P,y) = z).

Verheul showed: If the pairing can be inverted, then the CDH on G
and GT can be solved easily.

Protocols assume various other computation problems associated
with pairings and the groups G and GT . No rigorous analysis or
comparison of these so far.

Multivariate attacks give faster algorithms for inverting the pairing?
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Further topics
Easy DDH groups and the existence of distortion maps:
• P,aP,bP,abP,cP: e(aP,bP) = e(P,cP) iff abP = cP.
• If e(P,P) = 1 use e(P,ψ(P)) 6= 1.

Compressed pairings: Apply
• techniques from LUC and XTR in finite fields.
• techniques from point reduction/point compression on elliptic

curves.

Blinded pairings ...

Use hyperelliptic curves ...
• Offer compression technique not available on elliptic curves.
• More flexibility for embedding degrees?
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Thank you for your attention! Questions?
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