
Hypergeometric motives over Q and their L-functions
We now give a different description of some of the above ansatz in the case

of hypergeometric data defined over Q. We then proceed to give a recipe for the
L-functions attached to fibers...

1. Preliminaries

1.1. Conventions on hypergeometric data. Particularly for the purposes of
L-functions it is useful to make various normalisations on the hypergeometric data.
Firstly we assume that (α, β) is balanced of degree d ≥ 1 and is non-resonant. Next,
since the datum is defined over Q, it can be defined by multisets of cyclotomic
indices, denoted by A and B. We can also write PA and PB as the associated
products of cyclotomic polynomials, with PA =

∏
e∈AΦe.

Note that taking the fiber of H(A,B) at t gives the same motive as that for
H(B,A) at 1/t. Our convention for (A,B) is as follows. If 1 ∈ A∪B, then we shall
take 1 ∈ B (this will have an effect on various formulas below). Else we shall take B
so that it contains the largest element in A∪B (this choice is essentially arbitrary).

1.2. Hodge functions. Corresponding to the zig-zag diagram described in §??,
for a given hypergeometric datum (α, β) write

D(x) = #{αi : αi ∈ α|αi ≤ x} −#{βj : βj ∈ β|1− βj ≤ x},

where the collections of α’s and β’s are multisets. The effective weight w of the
hypergeometric datum (α, β) is then given by w+1 = maxD(x)−minD(x). Letting
D = −minD(x), this effective weight is 2D more than the previously defined
weight, and corresponds to Tate twisting by D. As an exercise, one can show that
w+ 1− 2D is equal to the multiplicity b1 of 1 in B. Also, whenever 1 6∈ B we have
D ≥ 1 (by our convention that β has the largest cyclotomic index).

The full Hodge polynomial is more complicated. One way to define it is via

H(T ) =
∑
αi∈α

TD(αi)−zαi
T zαi − 1

T − 1
,

where zαi is the multiplicity of αi (the sum itself includes each αi only once).
The degree of the numerator of H(T ) is w + 1, while the degree of denominator
is the Tate-twisting parameter D. The Hodge polynomial h(T ) is in fact just the
numerator of H(T ), that is (conjectured by Corti and Golyshev it seems), we have

h(T ) =
∑

p+q=w

hp,qT p.

For instance, for
(
PA,PB) =

(
Φ6Φ10,Φ3Φ12) we have D(1/10) = 0, D(1/6) = 1,

D(3/10) = 2, D(7/10) = −1, D(5/6) = 0, D(9/10) = 1, so that the above Hodge
function is H(T ) = (1/T + 1 + T + 1/T 2 + 1/T + 1) = (1 + 2T + 2T 2 + T 3)/T 2.
More complicated is the example

(
PA,PB) =

(
Φ4

2Φ3
3Φ2

6,Φ
2
1Φ4Φ5Φ9) where one gets

(1 + 3T + 3T 2 + 3T 3 + 3T 4 + T 5)/T 2.

2. The hypergeometric trace

Intrinsic to our description of Euler factors will be the hypergeometric trace for-
mula of Katz. The form of it that we present, specific to our case of hypergeometric
data over Q, was derived by Cohen and is more suitable for computation.
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Let q = pf be a prime power, and define ωp to be the (canonical) p-adic
Teichmüller character given by ωp(x) = x · exp

( −1
p−1 log xp−1

)
when p > 2, and

let it be trivial for p = 2. Choosing π with πp−1 = −p, the Gauss sum is defined as

gq(r) =
∑
a∈F?q

ωp(a)−rζtr(a)π where ζpπ = 1 with ζπ ≡ 1 + π (modπ2),

where there are various conventions with ±r and also a global minus sign.
Recall the γv defined by PA(T )/PB(T ) =

∏
v(T

v− 1)γv . The only restriction on
them is that

∑
v vγv = 0. We also recall the scaling parameter M =

∏
v v

vγv

The canonical (p-adic) Gauss sum quotient for given hypergeometric data is then

Gq(r) =
∏
v

gq(rv)γv .

Each nontrivial Gauss sum has size
√
q, so by using the Möbius-induced relation∑

v γv = −b1 (see §3.1), we find that Gq(r) is generically of size (1/
√
q)b1 .

From this, for t with vp(Mt) = 0 we then define the hypergeometric trace as

(1) Uq(t) =
1

1− q

(q−2∑
r=0

ωp(M/t)rQq(r)

)
where Qq(r) = (−1)m0qD+m0−mrGq(r) and mr is the multiplicity of −rq−1 ∈ β (these

correspond to trivial characters in the previous language of Katz). We shall give a
description of the derivation of this formula from the previous one below, but first
make some comments.

• Firstly, the choice of r versus −r reappears in the convention of t versus 1/t.
The two major implementations of L-functions of hypergeometric motives,
those by Cohen in GP/PARI and Watkins in Magma, both use the latter
convention. Due to this, in our description of L-functions in later sections,
for consistency with calculations we shall refer to the parameter t̃ = 1/t,
and thus the Teichmüller character will be applied to Mt̃.
• The Tate-twisting factor D is the degree of denominator of the Hodge func-

tion as in §1.2. Since m0 = b1 is the multiplicity of 1 in β while gq(0) = −1,
we find Gq(0) = (−1)b1 = (−1)m0 and Qq(0) = qD.
• This formula gives a p-adic number, while we know that Up(t) is (after

scaling) in fact an integer. By computing to sufficiently high p-adic precision
(depending on the weight), we can recognise it as an integer.
• We can also give a brief heuristic as to why Uq(t) might be expected to have

size qw/2 (which follows rigorously since the motive is pure, implying the
Frobenius eigenvalues have this size). Indeed, generically we have mr = 0
and the size of Gq(r) is (1/

√
q)b1 , so that the typical summand in Uq(t) has

size (
√
q)2(D+b1)−b1 . Upon using w + 1 = b1 + 2D this becomes q(w+1)/2,

and thus if the r-sum exhibits square-root cancellation, we expect Uq(t) to

have maximal size (1/q) · √q · q(w+1)/2 = qw/2.

• Note that the above trace formula can be used whenever vp(Mt̃) = 0, even if
p is wild (that is, it divides one of the cyclotomic indices in A∪B). However,
in some wild cases the Euler factor that is obtained from the trace formula
is not that of the L-series, due to the inertia not being trivial. Also, the
Katz rendition of the trace formula requires instead that vp(t) = 0.
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2.1. Equivalence with previous form of trace formula. We now explain how
the above trace formula for Uq(t) is equivalent to that given above for H(α, β|t)
(except for the scaling by qD). The first part is simply unwinding the definitions of
p-adic Pochhammer symbols and the like, keeping track of the distinction between
{}0 and {}∞. Then, following some notes of Henri Cohen, we use the Gross-Koblitz
formula to relate the products of p-adic Γ-functions over residue systems to products
of Gauss sums.

The Katz/FRV trace formula says

H(α, β|t) =
1

1− q
∑

ρ∈ 1
q−1Z/Z

(−p)ηf (ρ)
∏
i(αi)∞,ρ∏
i(βi)0,ρ

ωp(t)
ρ(q−1).

where

(x)ν,ρ =
Γν,ρ(x− ρ)

Γν,ρ(x)
with Γν,ρ(x) =

f−1∏
i=0

Γp
(
{pix}v

)
.

Now swap ρ to −ρ (inducing t→ 1/t), and put ρ = r/(q − 1) for 0 ≤ r ≤ q − 2.
Unraveling the p-adic Γ-functions we see that H(α, β|t) is

1

1− q

q−2∑
r=0

ω(1/t)r(−p)ηf (−r/(q−1))
∏
j

f−1∏
i=0

Γp({pi(αj + r/(q − 1))}∞)

Γp({pi(βj + r/(q − 1))}0)

Γp({piβj}0)

Γp({piαj}∞)
.

Write

Xq(r) =

f−1∏
i=0

∏
j Γp({pi(αj + r/(q − 1))}∞)∏
j Γp({pi(βj + r/(q − 1))}∞)

,

and convert {}0 into {}∞ = {}. Since Γp(0) = +1 and Γp(1) = −1, this change
gives a sign contribution. Writing l(x) for the multiplicity of −x in β, the above is

H(α, β|t) =
1

1− q

q−2∑
r=0

ω(1/t)r(−p)ηf (−r/(q−1)) (−1)l(r/(q−1))Xq(r)

(−1)l(0)Xq(0)
.

Now we similarly unravel the exponent of (−p). Recall that

ηf (x) =

f−1∑
i=0

η(i)(pix) where η(i) is the Landau function for (piα, piβ).

Namely, the Landau function for (α, β) is

η(x) =
∑
i

[
(αi − x)∞ − (αi)∞]−

[
(βi − x)0 − (βi)0]

and so

η(i)(pix) =
∑
j

[
{piαj − pix}∞ − {piαj}∞]−

[
{piβj − pix}0 − {piβj}0]

We write

Sf (x) =

f−1∑
i=0

{pix}∞ and Tf (r) =
∑
j

[
Sf (αj + r/(q − 1))− Sf (βj + r/(q − 1))

]
so that

ηf
(
−r/(q − 1)

)
= Tf (r)− Tf (0)− f ·

[
l
(
r/(q − 1)

)
− l(0)

]
,

the last term coming from the difference between {}0 and {}∞.
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Upon substituting for ηf and combining we then get

(2) H(α, β|t) =
1

1− q

q−2∑
r=0

ω(1/t)r
qm0

qmr
Xq(r)

Xq(0)

(−p)Tf (r)

(−p)Tf (0)
,

as pf = q and the signs in (−p) cancel out, and we wrote mr = l(r/(q − 1)).
Since our hypergeometric datum is over Q, both Xq(r) and the exponent Tf (r)

involve products or sums over reduced (coprime) residue systems modulo various
m ∈ A ∪ B. However, expanding products of p-adic Γ-function in a distributional
manner is done over complete residue systems. Möbius inversion allows us to pass
from one to the other, and also makes using the γv more natural than A and B.

The transformations we sketch below appear in notes by Cohen. After making
a Möbius inversion, we then use the Gross-Koblitz formula to replace the products
of p-adic Γ-functions by Gauss sums, achieving (for some constant C)

Xq(r)(−p)Tf (r) = C ·
∏
a∈A

∏
d|a(ωp(d)drgq(dr))

µ(a/d)∏
b∈B

∏
e|b(ωp(e)

ergq(er))µ(b/e)

= C · ωp(M)r ·
∏
v

gq(rv)γv .(3)

The second expression follows from the first by the definitions of M and γv.
Since we divide Xq(r)(−p)Tf (r) by Xq(0)(−p)Tf (0) in (2), the constant C cancels

out. Furthermore, gq(0) = −1 implies Xq(0)(−p)Tf (0) = C ·
∏
v(−1)γv = C ·(−1)b1 .

Upon accounting for the Tate-twisting factor qD (ensuring the traces are integral)
this then gives the trace formula (1) given above.

2.1.1. We now sketch the method of Cohen to show (3). We preliminarily record
that for p - N we that for x ∈ Q we have

f−1∑
i=0

N−1∑
z=0

{pi(x+ z/N)} =

f−1∑
i=0

{piNx}+ (N − 1)
f

2
.

To show this, firstly note it is true for f = 1 as both sides are invariant under the
transformation x→ x+ 1/N so that we can assume 0 ≤ x < 1/N when the result∑
z (N){x + z/N} = {Nx} + (N − 1)/2 is immediate. For f > 1, since p - N the

map z → piz permutes Z/NZ, and we apply the f = 1 case with x replaced by pix.
For integers 0 ≤ r < q − 1, corresponding to the Tf (r) we write

Eq(N, r) = (p− 1)

N−1∑
z=0

f−1∑
i=0

{
pi
(
z

N
+

r

q − 1

)}
= sq(Nr) + (p− 1)(N − 1)

f

2
,

where

sq(u) = (p− 1)

f−1∑
i=0

{
pi

u

q − 1

}
is the sum-of-digits function. We also define

Bq(N, r) = πEq(N,r)
N−1∏
z=0

f−1∏
i=0

Γp

({
piz

N
+

pir

q − 1

})
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and note that by Möbius inversion and the definitions of Xq(r) and Tf (r) we have

Xq(r)(−p)Tf (r) =

∏
a∈A

∏
d|aBq(a, r)

µ(a/d)∏
b∈B

∏
e|bBq(b, r)

µ(b/e)
.

To evaluate Bq(N, r) we first recall the p-adic Γ-function distribution formula
(see Theorem 11.6.14 of Cohen [?]), that for x ∈ Q we have

N−1∏
z=0

Γp(x+ z/N) = cp,N
Γp(Nx)

Nwp(Nx−1)
,

where cp,N is a constant that can be given explicitly. Here wp(u) = [u − u\p]
with s\p defined as quotient without remainder (see Definition 11.6.1 of [?]) and
u[s−s\p] is well-defined as limm→s u

m−m\p (see Proposition 11.6.2 of [?]). Moreover,
a version of this with fractional parts, namely

N−1∏
z=0

Γp({x+ z/N}) = cp,N
Γp({Nx})
Nwp({Nx}−1)

,

can be seen to be true, again as both sides are invariant under the transformation
x→ x+ 1/N , and when 0 < x < 1/N the distribution formula applies.

Then we apply the above with x = pir/(q − 1) and get

N−1∏
z=0

f−1∏
i=0

Γp

({
piz

N
+

pir

q − 1

})
= cfp,Nωp(N)sq(Nr)

f−1∏
i=0

Γp

({
piNr

q − 1

})
,

Here the simplification of the N•-term to ωp(N)sq(Nr) is obtained by a (tedious)
calculation similar to Corollary 11.6.3 of Cohen; for brevity we omit the details.

Finally we note sq(Nr) ≡ Nr (mod p− 1), so ωp−1p ≡ 1 implies ω
sq(Nr)
p = ωNrp ,

while the Gross-Koblitz formula [?] says

gq(r) = −πsq(r)
f−1∏
i=0

Γp

({
pi

r

q − 1

})
.

As the (p−1)(N−1) f2 term in Eq(N, r) is independent of r, its effect can be moved
to the constant – similarly the minus sign in the Gross-Koblitz formula. Thus we
obtain (3), with M arising as

∏
a∈A

∏
d|a d

dµ(a/d)/
∏
b∈B

∏
e|b e

eµ(b/e) =
∏
v v

vγv .

2.1.2. Caveat. Some modifications to the above calculations might need to made
when p = 2. However, the final result remains the same. Note that p = 2 will never
be “good” for the L-function, but we still may want to apply the trace formula.

2.1.3. Modifications. When A and B are not disjoint, most of the above still holds,
with the qD+m0−mr values in (1) coming from the B of interest. However, the
(−1)m0 in Qq(r) was actually derived as

∏
ν(−1)γν , and

∑
ν γν = −b1 need no

longer hold. Thus this m0 should correspond to the core datum, obtained by
cancelling common cyclotomic indices in A and B. Note that the resulting Euler
factors for a resonant datum will have higher degree, and so it is typically superior
to compute with the core datum and then post-multiply by a computable factor.
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2.1.4. Computing the hypergeometric trace. To calculate the hypergeometric trace
using (1), one first pre-computes gq(r) for all 0 ≤ r < q − 1. Here Cohen uses
a method hinted at by Boyarsky [?], which (perhaps curiously) re-interprets the
Gauss sums in terms of p-adic Γ-functions evaluated at multiples of 1/(q − 1),
and pre-computes Γp

(
a
q−1
)

for all a with lowered amortised cost by an induc-

tive formula.1 This takes time O(fq), with similar space requirements. Each
term in Uq(t) then takes essentially constant time (depending on the number of
nonzero γv) to calculate, for a total time cost proportional to q. As noted previ-
ously, to recover Uq(t) ∈ Z one computes to sufficiently high p-adic precision, with
the computational complexity linear in this precision. Of course, one can gain var-
ious constant factors by use of symmetry and duplication relations for the p-adic
Γ-function.

1The FRV/Katz formula involves evaluating Γp at shifts of multiples of 1/(q − 1).
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Canonical schemes of hypergeometric motives over Q
In this section we describe a canonical scheme associated to a hypergeometric

motive over Q. At a good prime p, the hypergeometric trace should (somehow) be
related to the number of points over Fp.

3. Preliminaries

3.1. Combinatorial transformations (and exercises). Let G± be the multi-
sets where v appears to multiplicity |γv| where γv has the same sign as the ± symbol.
For example with

(
PA,PB) =

(
Φ2

2Φ6,Φ
2
1Φ4) we have γ = (−3, 2,−1,−1, 0, 1), so

that G+ = {2, 2, 6} and G− = {1, 1, 1, 3, 4}. Note that each member e ∈ A∪B con-
tributes a count of 2ω(e) to the γv, distributed as a Möbius sum across the divisors.
There can of course be cancellation across various e for the multisets G±, but we see
that e = 1 is the only case that gives an odd number of contributions, and similarly
is the only case which does not give equidistributed contributions between G±.

Letting b1 be the multiplicity of 1 ∈ B, our conventions imply |G−| = |G+|+ b1.

3.2. Relating Gauss sums to Jacobi sums. Recall the Gauss sum defined in
the previous section. Related to this is the p-adic Jacobi sum. For a vector ~v = (vi)
we define

Jq(~v) =
∑
~a∈F?q∑
i ai=1

ω(ai)
vi with the relation Jq(~v) =

∏
i gq(vi)

gq
(∑

i vi)
,

the latter holding when none of the vi nor their sum is divisible by (q − 1).
We thus generically have

Gq(r) =

∏
i gq(rg

+
i )∏

j gq(rg
−
j )

=
Jq(r · ~g+)

Jq(r · ~g−)
,

where ~g+ = (g+i ) and ~g− = (g−j ) run over the multisets G± respectively.

4. The canonical associated scheme

Considering character orthogonality in the hypergeometric trace sum vis-â-vis
the above Jacobi sum quotient, the canonical associated scheme is then defined (in
the variables Xj , Yi) by the equations

∑
j Xj =

∑
i Yi = 1 and

#G−∏
j=1

X
g−j
j =

1

Mt̃

#G+∏
i=1

Y
g+i
i where M =

∏
v

vvγv =
∏
a∈A

∏
d|a

ddµ(a/d)
/∏

b∈B

∏
e|b

eeµ(b/e)

and t̃ is the hypergeometric parameter. Note that this scheme (which is global)
need not be in a very simplified form.

Let r = gcd(G+ ∪ G−). The above canonical associated scheme splits into r
reducible components over the algebra defined by xr − 1/Mt̃. When r = 1 the
hypergeometric data is primitive.
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4.1. The Belyi case. When
∑
v |γv| = 3 we are in the Belyi case, and can re-

late a 0-dimensional scheme to the hypergeometric data as xa(1 − x)b − 1/Mt̃,
where G+ = {a + b} and G− = {a, b}. The Jacobi sum here will be denoted by
the shorthand J(a, b), with it understood that one multiplies each argument by r
when computing the sum over r in the hypergeometric trace. The cases here have
weight 0, and will be described a bit more in §5.1.

4.2. Cases where a canonical curve occurs. There are three (or four) basic
constructions to try to obtain a plane curve from the hypergeometric data. The first
two occur when

∑
v |γv| = 4. When |G+| = |G−| = 2 we have a relation a+b = c+d

with {a, b} = G− and {c, d} = G+. This then gives the quotient J(a, b)/J(c, d),
with the associated (possibly reducible) curve as xa(1−x)b = yc(1−y)d/Mt̃. When
we have |G+| = 1, then a = b + c + d with {a} = G+ and {b, c, d} = G−, so that
the Jacobi sum is J(b, c, d) and the curve is xbyc(1− x− y)d = 1/Mt̃.

The other construction(s) can occur when
∑
v |γv| = 6. Letting e be the largest

index for which γe is nonzero, we need to have some a, b with a+ b = e with a, b in
the opposite set of G± that e is in. When this occurs, the remaining three elements
will similarly form a summation, say c + d = f . Thus we have both J(a, b) and
J(c, d), and these form a product when e, f ∈ G+, and else form a quotient. The
product yields xa(1− x)byc(1− y)d = 1/Mt̃, and the quotient is as above.

5. Identifying weight 0 motives

The cases of weight 0 should correspond to Artin motives. In the Belyi case
exhibiting the number field is rather easy. We also give a more difficult example
(Feb 2013 Trieste), while David Roberts has done much more complicated examples.

5.1. Artin representations for Belyi motives. There is one case of weight 0 in
degree 1, two twist families each in degree 2 and 3, and 7 twist families in degree 4.
The cases of degree 1 and 2 have been computed by Cohen, though I prefer to
handle one of his cases via twisting. Both of the degree 3 cases are also known, and
4 of the degree 4 cases. Some higher degree cases are also listed.

In all cases, the Artin representation is that for the algebra xa(1 − x)b − 1/Mt̃
minus that for a subalgebra xc − 1/Mt̃ where c = gcd(a, b). Here c is the im-
primitivity index. The associated Jacobi sum can be seen to be J(a, b) as we have
G+ = {a+ b} and G− = {a, b}. A tabulation is in Table 1. In general, in degree d
one should be able to handle any a, b ≤ d with a+ b− c = d and c|d. In particular,
here both (a, b) = (d, d) and (a, b) = (d, 1) occur.

Note that in degree 1, the discriminant of x(1− x)− 1/4t̃ is (t̃− 1)/t̃, giving the

quadratic extension Q
(√

t̃(t̃− 1)
)

as expected.
The twisting notation is interpreted as follows. For instance, to get the repre-

sentation for PA = Φ6 and PB = Φ1Φ2 one sees 3t · Rt in the twist column of
the second line, which means to take the Artin representation Rt for the given t,
and then twist it by the Kronecker character given by 3t. In odd degree one has
R1/t rather than Rt, and here one can note that α and β are (according to our
convention) switched upon twisting.
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PA PB M algebra (u = 1/Mt̃) subalg twist
Φ2 Φ1 22 x(1− x)− u Q self

Φ3 Φ1Φ2 33/22 x2(1− x)− u Q 3t̃ ·Rt̃
Φ4 Φ1Φ2 24 x2(1− x)2 − u x2 − u self

Φ2Φ6 Φ1Φ3 26 x3(1− x)3 − u x3 − u self
Φ2Φ4 Φ1Φ3 28/33 x3(1− x)− u Q −3t̃ ·R1/t̃

Φ5 Φ1Φ2Φ3 55/2233 x3(1− x)2 − u Q 15t̃ ·Rt̃
Φ5 Φ1Φ2Φ4 55/28 x4(1− x)− u Q 5t̃ ·Rt̃

Φ3Φ6 Φ1Φ2Φ4 36/24 x4(1− x)2 − u x2 − u self
Φ8 Φ1Φ2Φ4 28 x4(1− x)4 − u x4 − u self

Φ2Φ10 Φ1Φ5 210 x5(1− x)5 − u x5 − u self
Φ2Φ3Φ6 Φ1Φ5 2636/55 x5(1− x)− u Q −5t̃ ·R1/t̃

Φ4Φ12 Φ1Φ2Φ3Φ6 212 x6(1− x)6 − u x6 − u self
Φ9 Φ1Φ2Φ3Φ6 39/26 x6(1− x)3 − u x3 − u 3t̃ ·Rt̃

Φ4Φ8 Φ1Φ2Φ3Φ6 216/36 x6(1− x)2 − u x2 − u self
Φ7 Φ1Φ2Φ3Φ6 77/2636 x6(1− x)− u Q 7t̃ ·Rt̃
Φ7 Φ1Φ2Φ5 77/2255 x5(1− x)2 − u Q 35t̃ ·Rt̃
Φ7 Φ1Φ2Φ3Φ4 77/2833 x4(1− x)3 − u Q 21t̃ ·Rt̃

Φ2Φ14 Φ1Φ7 214 x7(1− x)7 − u x7 − u self
Φ2Φ4Φ8 Φ1Φ7 224/77 x7(1− x)− u Q −7t̃ ·R1/t̃

Φ2Φ4Φ8 Φ1Φ3Φ5 224/3355 x5(1− x)3 − u Q −15t̃ ·R1/t̃

Φ16 Φ1Φ2Φ4Φ8 216 x8(1− x)8 − u x8 − u self
Φ3Φ6Φ12 Φ1Φ2Φ4Φ8 312/28 x8(1− x)4 − u x4 − u self

Φ5Φ10 Φ1Φ2Φ4Φ8 510/216 x8(1− x)2 − u x2 − u self
Φ3Φ9 Φ1Φ2Φ4Φ8 318/224 x8(1− x)− u Q t̃ ·Rt̃
Φ3Φ9 Φ1Φ2Φ7 318/2277 x7(1− x)2 − u Q 7t̃ ·Rt̃
Φ5Φ10 Φ1Φ2Φ3Φ4Φ6 510/2436 x6(1− x)4 − u x2 − u self
Φ3Φ9 Φ1Φ2Φ4Φ5 318/2855 x5(1− x)4 − u Q 5t̃ ·Rt̃

Table 1. Some Belyi cases of weight 0 Artin representations

5.2. A non-Belyi example. We consider the weight 0 datum
(
PA,PB) =

(
Φ8,Φ1Φ2Φ3).

We can compute a field of definition via considering the power series

f(z) =

∞∑
n=0

( ∞∏
k=1

(kn)!γk
)
zn,

and then linear algebra on (finite approximations to) zlf(z)m yield a relation. In
our case, the γ-list is [1,−2,−3,−4, 8], and we need only consider even m.

We obtain

16∑
m=0

qm(z)f(z)2m = 0,

where the qm are polynomials of degree not more than 12.
Via specialising z in qm(z), we then get a degree 32 fieldK (or algebra in general),

which turns out to have C2 oS4 as its (generic) Galois group, and in fact the Galois
closure is generated by the unique octic subfield of K. Interpolating the obtained
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fields suitably, we find that for z = u/v the octic can be taken as

X8 − v(210u+ v)X6−26uv2(212u− 33v)X4+

+ 21232u2v3(214u− 33v)X2 + 218u3v3(214u− 33v)2.

This then has a degree 4 Artin representation whose Euler factors for small p match
that for the hypergeometric motive with parameter t̃ = 1/Mz.The discriminant of
this polynomial is a constant times v21u19(214u− 27v)8(228u2− 21511uv+ 125v2)4,
but it seems that the latter factor disappears when computing the ring of integers.

Ideally the degree 4 representation from the hypergeometric data would already
be the quotient of the octic Dedekind ζ-function by that for the quartic subfield.
However, it turns out to need to be twisted by χz, that is, the quartic has 3 octic
extensions inside the Galois closure, and we need a different one.

We thus took a compositum with Q(
√
z) and computed the octic subfields, and

interpolating four z-values was sufficient to yield the following form for the octic:

X8 − 3v(212u+ v)X6 + v2(22215u2 + 2125uv + 3v2)X4−

−v3(23237u3 + 218117u2v + 2821uv2 + v3)X2 + 26(210u+ 3v)2(214u− 3v)2uv3.

This gives the desired Artin representation as the quotient of the octic by the
obvious quartic subfield.

Note that the quartic field can be given by

X4 + 8uvX2 − uv2X + 16u2v2, or X3(1−X)− 64z.

In fact, the latter being in Belyi form, the octics are just given by

X6(1−X2)− 64z, and z3X6(1− zX2)− 64z,

the second (which is also X6(1−zX2)−64/z2) giving the desired Artin representa-
tion vis-a-vis the quartic subfield. Indeed, we should probably be able to compute
the octic as some sort of 3-point cover (which is how simplifications were made).

5.3. Unidentified cases. Two twist families of degree 4 and weight 0 are uniden-
tified. They are

(
PA,PB) =

(
Φ12,Φ1Φ2Φe) for e = 3, 4, 6. For e = 3 attempting

the analysis as in the previous subsection leads to a difficult but solvable linear
algebra problem with m = 48 and degrees of q(x) up to 44. However, the fields one
obtains upon z-specialisation are too difficult to really work with.

In degree 5 there are two twist families still unidentified, namely PA = Φ2Φ8

and PA = Φ2Φ4Φ6, both with PB = Φ1Φ5. There are 7 unknown twist families
in degree 6. Most likely we are running up against the fact that these are really
motives, and not just varieties (number fields being the 0-dimensional case), so that
a piece of the cohomology is desired, not the whole.

In terms of the Beukers-Heckmann classification, the
(
PA,PB) =

(
Φ8,Φ1Φ2Φ3)

case corresponds to a 4 = 3+1 splitting in their Theorem 5.8, while the
(
PA,PB) =(

Φ12,Φ1Φ2Φ4) case is the 4 = 2+2 imprimitive splitting, and
(
PA,PB) =

(
Φ12,Φ1Φ2Φ3)

is #37 in their table. The two twist families in degree 5 corresponds to 5 = 2 + 3
and 5 = 1 + 4 in their Theorem 5.8, while the degree 6 examples include both
6 = 5 + 1 and 6 = 4 + 2 and examples #45-49.
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6. Curves for weight 1

Similarly, weight 1 looks to be given by curves, specifically elliptic curves (over Q)
in degree 2, while genus 2 curves and elliptic curves over a quadratic field (or algebra
for special t̃) arise in degree 4. Many have been catalogued, with Cohen handling
degree 2. One can reduce the problem in some cases via twisting (adding 1/2 to all
the α and β). In all the examples I have done, one gets a sufficiently short Jacobi
sums to reduce directly to a dimension 0 or 1 variety, which then can hopefully be
identified.

6.1. Elliptic curves in degree 2. Again Cohen has handled all 10 degree 2 cases
(and again I prefer to simplify slightly via twisting).

To exemplify, consider
(
PA,PB) =

(
Φ3,Φ4). The Jacobi quotient is given by

J(4, 1)/J(3, 2), which yields the curve x4(1−x) = y3(1− y)2/Mt̃ with M = 27/64.
Writing u = 1/Mt̃, a model of a-invariants is [0, 0,−u,−u, 0], or [0, 0, 0,−12/t̃, 16/t̃2].

This case is additionally interesting for it gives a sense as to what to expect
when considering a degree 4 example with Φ3Φ4 as one of the components. The

above elliptic curve has j-invariant 1728 t̃
t̃−1 , and as noted (in essence) by FRV,

by taking t̃ = t0p
3, the second model above reduces to [0, 0, 0,−12/t0p

3, 16/t20p
6],

which can be scaled to [0, 0, 0,−12p/t0, 16/t20], so that the reduction modulo p is
y2 = x3 + 16/t20. Similarly, when t̃ = t0/p

4, one gets [0, 0, 0,−12p4/t0, 16p8/t20]
which scales to [0, 0, 0,−12/t0, 16p2/t20], and so modulo p is y2 = x3 − (12/t0)x.

6.1.1. Genus 2 quotient. The case
(
PA,PB) =

(
Φ3,Φ6) does not behave quite the

same. This has a Jacobi quotient J(1, 1)/J(3, 3) to give x(1− x) = y3(1− y)3/Mt
with M = 1/16. This is a genus 2 curve with V4 as its automorphism group. One of
the nonhyperelliptic involutions gives a quotient with j-invariant 0, while the other
gives the elliptic curve we want.

PA PB Jacobi M curve (u = 1/Mt̃) twist
Φ2

2 Φ2
1 J(1, 1)2 24 [1, u, u, 0, 0] self

Φ3 Φ6 J(1, 1)/J(3, 3) 1/24 [−3u, 4u+ u2/4] (quo) self

Φ6 Φ2
1 J(3, 2, 1) 2433 [1, 0, 0, 0,−u] −3t̃ · E1/t̃

Φ4 Φ2
1 J(2, 1, 1) 26 [1, 0, 0, u, 0] −t̃ · E1/t̃

Φ3 Φ2
1 J(1, 1, 1) 33 [1, 0, u, 0, 0] −3t̃ · E1/t̃

Φ3 Φ4 J(4, 1)/J(3, 2) 33/26 [0, 0,−u,−u, 0] 3t̃ · E1/t̃

Table 2. Degree 2 weight 1 elliptic curves

Note that (0, 0) is a 4-torsion point for the first case, while it is a 2-torsion point
for the fourth case, a 3-torsion point for the fifth case, and has infinite order in the
last case.

The model in the second case might be improved (and see the next section). The
“guess” of [0, 0, u, 0, u] (filling a3 and a6) is not correct, though presumably this is
the other quotient (with j-invariant 0).

7. Imprimitivity: elliptic curves in higher degree

In the degree 2 case, we have 10 elliptic curves coming from the
(
5
2

)
pairs of

{Φ2
1,Φ

2
2,Φ3,Φ4,Φ6}. In degree 2m we will have 10 elliptic curves defined over a
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degree m algebra coming from pairs from{∏
d|m

Φ2
m/d,

∏
d|m

(d,2)=1

Φ2
2m/d,

∏
d|m

(d,3)=1

Φ3m/d,
∏
d|m

(d,4)=1

Φ4m/d,
∏
d|m

(d,6)=1

Φ6m/d

}
.

Call these Pi(m) for i = 1, 2, 3, 4, 6. These correspond to the a-invariants. The
twist classes depend on the parity of m. The (P1, P2) and (P3, P6) pairings always
give self-twists, and the other 8 are also self-twists when m is even. When m is odd
the twist can be computed by swapping the P1 with P2 and P3 with P6.

The results are listed in Table 3. The case with a3 and a6 has a quotient to get
the given model (listed in short form). The case with a1 and a2 involves a3 (maybe
due to the squaring?), as else the curve would be singular. The case of a2 with a6
does not have a direct Jacobi decomposition (the notation J3(u) means J(u, u, u)
here), but we still can guess the corresponding elliptic curve by analogy (maybe
there is a fibration?). Another model is y2 = x3 − s

4x
2 + s

2x−
s
4 = x3 − s

4 (x− 1)2.

PA PB Jacobi M (sm = 1/Mt̃)
P6(m) P1(m) J(3m, 2m,m) 24m33m [1, 0, 0, 0,−s]
P4(m) P1(m) J(2m,m,m) 26m [1, 0, 0, s, 0]
P3(m) P1(m) J(m,m,m) 33m [1, 0, s, 0, 0]
P2(m) P1(m) J(m,m)2 24m [1, s, s, 0, 0]
P4(m) P6(m) J(6m,m)/J(4m, 3m) 22m/33m [0, 0, 0,−s, s]
P3(m) P6(m) J(m,m)/J(3m, 3m) 1/24m [−3s, 4s+ s2/4] quo
P2(m) P6(m) J3(m)/J3(2m) 1/33m [0,−s, 0, 8s,−16s]
P3(m) P4(m) J(4m,m)/J(3m, 2m) 33m/26m [0, 0,−s,−s, 0]
P2(m) P4(m) J(m,m)/J(2m, 2m) 1/22m [0,−s, 0, s, 0]
P2(m) P3(m) J(3m,m)/J(2m, 2m) 24m/33m [0,−s, s, 0, 0]

Table 3. Elliptic curve cases (over a degree m algebra) in degree 2m

.
8. Genus 2 hyperelliptic curves in degree 4

Next we list the known cases of genus 2 curves in degree 4. First we give the 18
cases that come directly from Jacobi sums, and then those that come from quotients
of higher genus curves.

To exemplify, take
(
PA,PB) =

(
Φ3Φ6,Φ

2
1Φ4). The Jacobi sum is given by

J(4, 1, 1), which yields x4y(1−x−y) = 1/Mt̃ with M = 36/22. Writing u = 1/Mt̃,
a model is [1, 2, 1, 0, 0, 0,−4u], that is, the curve y2 = x6 + 2x5 + x4 − 4/Mt̃.

In Table 4 we give the 18 cases. Perhaps some of the models could be improved
to be more suggestive. Another item to note, for say the eighth case

(
PA,PB) =(

Φ3Φ4,Φ
2
1Φ2

2), one can take t̃ = t0p
12 and study the Euler factor at p, where one

should get (1 + aT + pT 2)(1 + bT + pT 2) for some a, b.

8.1. Imprimitivity: a genus 2 curve over a quadratic algebra. Consider
the case of

(
PA,PB) =

(
Φ2

3Φ2
6,Φ

2
4Φ8). The Jacobi quotient is J(8, 4)/J(6, 6), and

since gcd(8, 4, 6, 6) = 2, we might expect a splitting over the quadratic algebra
given by x2 − 1/Mt̃. Indeed, the canonical scheme splits as two curves of genus 2,

and we obtain a hyperelliptic model [1, 0, 0, 2s,−4s, 0, s2] where s = 1/
√
Mt̃ (with

M = 312/220). This corresponds to the case of A = Φ2
3 and Φ2

2Φ4 in degree 4 (see
the penultimate entry in Table 4).
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PA PB Jacobi M curve (u = 1/Mt̃) twist

Φ3Φ6 Φ2
1Φ4 J(4, 1, 1) 36/22 [1, 2, 1, 0, 0, 0,−4u] −t̃ · C1/t̃

Φ5 Φ2
1Φ4 J(4, 1)J(1, 1) 55/26 [1, 2, 1, 0, 0,−4u,−4u] −5t̃ · C1/t̃

Φ8 Φ2
1Φ3 J(4, 3, 1) 216/33 [4, 1, 0, 0, 4u, 0] −3t̃ · C1/t̃

Φ5 Φ2
1Φ3 J(3, 1, 1) 55/33 [1, 2, 1, 0, 0, 4u, 0] −15t̃ · C1/t̃

Φ2
4 Φ2

1Φ3 J(3, 1)J(2, 2) 212/33 [4, 1, 8u, 0, 4u2, 0] −3t̃ · Ct̃
Φ2

2Φ4 Φ2
1Φ3 J(3, 1)J(1, 1) 210/33 [1, 2, 1, 0, 4u, 4u, 0] 3t̃ · C1/t̃

Φ5 Φ2
1Φ2

2 J(2, 2, 1) 55/24 [4, 1, 0,−2u, 0, u2] 5t̃ · Ct̃
Φ3Φ4 Φ2

1Φ2
2 J(2, 2)J(2, 1) 2233 [4, 1,−4u,−2u, 0, u2] 3t̃ · Ct̃

Φ5 Φ8 J(8, 1)/J(5, 4) 55/216 [1, 4, 0, 0, 0,−4u, 0] 5t̃ · C1/t̃

Φ5 Φ3Φ6 J(6, 1)/J(5, 2) 55/2436 [1, 0, 0, 0, 0,−4u, 4u] 5t̃ · C1/t̃

Φ5 Φ2
2Φ6 J(6, 2)/J(5, 3) 55/2833 [4, 0, 0,−4u, 0, u2] −15t̃ · Ct̃

Φ2
3 Φ2

2Φ6 J(2, 1)/J(3, 3) 33/28 [1, 4, 0,−2u,−4u, 0, u2] −3t̃ · Ct̃
Φ2

4 Φ5 J(2, 2)/J(4, 1) 212/55 [4, 0,−8u, 0, 4u2, u2] 5t̃ · Ct̃
Φ3Φ4 Φ5 J(5, 2)/J(4, 3) 2633/55 [4, 0,−4u, 0, 0, u2] 15t̃ · Ct̃
Φ2

2Φ4 Φ5 J(5, 1)/J(4, 2) 210/55 [1, 0, 0, 0,−4u, 4u, 0] −5t̃ · C1/t̃

Φ2
3 Φ5 J(5, 1)/J(3, 3) 36/55 [1, 4, 0,−2u, 0, 0, u2] 5t̃ · Ct̃

Φ2
3 Φ2

2Φ4 J(4, 2)/J(3, 3) 36/210 [1, 0, 0, 2u,−4u, 0, u2] −t̃ · Ct̃
Φ2

3 Φ2
1Φ2

2 J(2, 1)2 36/24 [1, 2, 1, 2u,−2u, 0, u2] t̃ · Ct̃
Table 4. Data for degree 4 weight 1 genus 2 curves

8.2. Genus 2 hyperelliptic curves from quotients. Here we list the cases of
genus 2 curves that come from a quotient of the curve defined by the Jacobi sums.

PA PB Jacobi M curve (u = 1/Mt̃) twist

Φ8 Φ2
1Φ4 J(4, 4)J(1, 1) 210 [4, 1, 0, 0,−16u,−4u] −t̃ · C1/t̃

Φ4Φ6 Φ2
1Φ3 J(3, 3)J(2, 2) 210 [4/u, 0,−16, 1, 0,−4u] −t̃ · Ct̃

Φ2
2Φ6 Φ2

1Φ3 J(3, 3)J(1, 1) 28 [4, 1, 0, 16u, 4u, 0] self
Φ5 Φ10 J(r, r)/J(5r, 5r) 1/28 [1, 2, 0, 0, 0, u/8, u/4] self

Table 5. Data for degree 4 weight 1 genus 3 and 4 quotients

8.2.1. First genus 3 case. Here we have
(
PA,PB) =

(
Φ8,Φ

2
1Φ4). The Jacobi

product J(4, 4)J(1, 1) gives the genus 3 curve x4(1 − x)4y(1 − y) = 1/Mt̃ with
M = 210. Writing u = 1/Mt̃, a hyperelliptic model is [1, 4, 6, 4, 1, 0, 0, 0,−4u].
One of the nonhyperelliptic involutions gives a quotient of genus 2 (the other one
gives an elliptic curve of j-invariant 1728), and this quotient has a model given
by [4, 1, 0, 0,−16u,−4u]. Twisting gives

(
PA,PB) =

(
Φ2

2Φ4,Φ8), corresponding to

C1/t̃ twisted by −t̃.

8.2.2. Second genus 3 case. Here we have
(
PA,PB) =

(
Φ4Φ6,Φ

2
1Φ3). The Jacobi

product J(3, 3)J(2, 2) gives the genus 3 curve defined by x3(1−x)3y2(1−y)2 = 1/Mt̃
with M = 210. Writing u = 1/Mt̃, a model is [4u4, 0, 12u3, u2, 12u2, 0, 4u, 0]. One
of the nonhyperelliptic involutions gives a quotient of genus 2 (the other one gives
an elliptic curve of j-invariant 0), and this quotient has a hyperelliptic model given
by [4/u, 0,−16, 1, 0,−4u]. Twisting gives

(
PA,PB) =

(
Φ3Φ4,Φ

2
2Φ6), corresponding

to Ct̃ twisted by −t̃.
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8.2.3. Third genus 3 case. Here we have
(
PA,PB) =

(
Φ2

2Φ6,Φ
2
1Φ3). The Jacobi

product J(3, 3)J(1, 1) gives the genus 3 curve x3(1 − x)3y(1 − y) = 1/Mt̃ with
M = 28. Writing u = 1/Mt̃, a hyperelliptic model is [1, 4, 6, 4, 1, 0, 4u, 4u, 0]. One
of the nonhyperelliptic involutions gives a quotient of genus 2 (the other one gives
an elliptic curve of j-invariant 0), and this quotient has a hyperelliptic model given
by [4, 1, 0, 16u, 4u, 0]. This case is a self-twist.

8.2.4. Genus 4 case. Here we have
(
PA,PB) =

(
Φ5,Φ10). The Jacobi quotient

J(1, 1)/J(5, 5) gives the genus 4 curve x(1 − x) = y5(1 − y)5/Mt̃ with M = 1/28.
Writing u = 1/Mt̃, a hyperelliptic model is [1/4, 0, 0, 0, 0, u, 5u, 10u, 10u, 5u, u].
Quotienting by either of the nonhyperelliptic involutions gives a genus 2 curve
with a hyperelliptic model of [1, 2, 0, 0, 0, u/8, u/4]. This case is also a self-twist.

8.3. Unresolved cases where a curve is known. There are a few cases with a
known curve, but no known coincidence with the hypergeometric traces as of yet.

8.3.1. Genus 3 case 4. Here we have
(
PA,PB) =

(
Φ3Φ4,Φ8). The Jacobi quotient

J(2, 1)/J(4, 4) gives the genus 3 curve x2(1−x) = y4(1−y)4/Mt̃ with M = 33/210.
However, this curve is not hyperelliptic. The automorphism group has a nontrivial
element (note the symmetry in y − 1/2), and the quotient by this gives an elliptic
curve with j-invariant 1728.

8.3.2. Genus 3 case 5. For
(
PA,PB) =

(
Φ2

2Φ6,Φ12) the quotient J(3, 1)/J(6, 6)

gives the genus 3 curve x3(1− x) = y6(1− y)6/Mt̃ with M = 1/2433. The curve is
not hyperelliptic, and there is a nontrivial element in the automorphism group.

8.4. Unknown degree 4 weight 1 cases. The above gives 10+2·18+6+2·2 = 56
cases. This leaves 18, which fall in 9 twist classes. These are: Φ12 with any of
{Φ2

1Φ4,Φ
2
1Φ6,Φ5,Φ3Φ4,Φ

2
3}; also Φ8 with Φ2

3 or Φ2
2Φ3; and Φ5 with Φ4Φ6 or Φ2

2Φ3.

8.5. Higher degree hyperelliptic curves. A primitive weight 1 datum in de-
gree 2g should be associated to a curve of genus g. Of course, once g > 2 we no
longer expect such a curve to be necessarily hyperelliptic. However, there are a
number of special families, and these tend involve a large percentage of the cases
in small degree.

For instance in genus g we can take G+ = {2, 2g + 1} and G− = {1, 2g + 2},
where the Jacobi quotient J(2g + 2, 1)/J(2g + 1, 2) yields a projective model of
x2g+2(z− x) = y2g+1(z− y)2/Mt̃, and one can complete the square in z to bring it
into a hyperelliptic model. Similarly G+ = {2g+2, 1, 1} with G− = {g+1, g+1, 2}
for J(g+1, g+1)/J(1, 1) yields y(1−y) = xg+1(1−x)g+1/Mt̃ of genus g (where one
can complete the square for y to see it as hyperelliptic). As the degree is 2dg/2e,
we should have a quotient of genus dg/2e.

g # hyp tw
3 80 46 35
4 11 3 3
5 10 5 3
6 2 1 2
all 103 55 43

Table 6. Degree 6 statistics

g # hyp tw
4 122 62 47
5 21 7 5
6 10 0 0
7 14 5 3
8 2 1 1

all 169 75 56

Table 7. Degree 8 statistics
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8.5.1. Degree 6 statistics. There are 277 primitive degree 6 weight 1 hypergeomet-
ric selections, in 140 twist families. I compute that 103 of the selections give an
irreducible curve via a Jacobi construction. In the end, there are 35 twist families
of genus 3 hyperelliptic curves.

None of the genus 3 curves (hyperelliptic or otherwise) is a self-twist, the same
holds for genus 4, but one of the genus 5 and both of the genus 6 curves are self-
twists. In fact, none of the nonhyperelliptic genus 3 or 4 curves has a twist that
yields a curve via a Jacobi construction (one pair of nonhyperelliptic genus 5 curves
has this property).

8.5.2. Degree 8 statistics. There are 927 primitive degree 8 weight 1 hypergeomet-
ric selections, in 466 twist families. I compute that 169 of the selections give an
irreducible curve via a Jacobi construction. In the end, there are 47 twist families
of genus 4 hyperelliptic curves.

None of the genus 4 curves (hyperelliptic or otherwise) is a self-twist, similarly for
genus 5 and 6, but one of the genus 7 and both of the genus 8 curves are self-twists.



16

9. Jacobi motives

Jacobi motives were perhaps at one time an attempt to understand tame primes
of hypergeometric motives, but by now have a life of their own.

9.1. The formalism (following Anderson) is given in Schappacher in terms of the
relationship to Grössencharacters, and sundry results appear elsewhere in the lit-
erature. With nj ∈ Z and xj ∈ Q/Z, let θ =

∑
j nj〈xj〉 be an element of the free

group on Q/Z with
∑
j njxj ∈ Z.

9.1.1. Field of definition. Letting m be the least common multiple of the denom-
inators of the xj , the natural field of definition Kθ is a subfield of Q(ζm), corre-
sponding by class field theory to quotienting out (Z/mZ)? by any elements which
leave θ fixed when scaling by them. When scaling by −1 fixes θ the field Kθ is
totally real, and otherwise it is a CM field. We write u ◦ θ =

∑
j nj〈uxj〉 for the

scaling of θ by u.

9.1.2. Weight and Hodge structure. The weight of the motive is defined as
∑
j nj ,

with the local Hodge weight associated to a coprime residue class u mod m given
by
∑
j nj{uxj}. In the former case the individual weights at each u must all be the

same and the action of complex conjugation on hp,p is (p, p, (−1)p) at each infinite
place, while in the latter case the Hodge structure can be obtained by pairing u
and −u, with (p, p,+) and (p, p,−) occurring equally when applicable.

9.1.3. Good Euler factors. The Euler factor for primes p - m can be given as
follows. Determine the smallest positive f withm|(pf−1), and consider the splitting
by scaled orbit sets as{

{api ◦ θ}f−1i=0 : 1 ≤ a ≤ m− 1, gcd(a,m) = 1
}
.

For each orbit, sum a representative as
∑
i ap

i ◦ θ =
∑
i

∑
j nj〈apixj〉 and compute

R(a) = (−p)v
f−1∏
i=0

∏
j

Γp
(
{apixj}

)nj
where v =

f−1∑
i=0

∑
j

nj{apixj},

with each Γp-evaluation being invertible in Zp. The Euler factor is then given by
the product

∏
a(1−R(a)T e)−1, where e is the degree of Kθ divided by the number

of a-orbits. As usual, one computes R(a) by p-adic methods to sufficient precision
to be able to recognise its Zp-invertible part as a unique integer in a Weil interval
(scaled by the known valuation). In particular, in the case of one orbit when e
equals deg(K), then R(a) will correspond to a trivial product of Gauss sums.

9.1.4. Conductors. The conductor of Jacobi sum motives is known to differing
levels of explicitness in various cases, and Weil gave the general upper bound that
it divides m2 in OK .

9.1.5. Root numbers. (empty section)
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9.2. Small examples. There are various special cases of Jacobi sum motives,
particularly when small numbers occur, and we recall a few of these. The first case
is 2〈1/2〉, when the weight is 2, the Hodge type is (1, 1,−), the field of definition
is the totally real subfield of Q(ζ4) (namely Q), and computation gives us that we
have a Tate twist of the Kronecker character χ−4. Similarly 〈1/3〉 + 〈2/3〉 gives a
Tate twist of χ−3, and 〈1/4〉+ 〈3/4〉 gives a Tate twist of χ−8, while 〈1/5〉+ 〈4/5〉
gives a Tate twist of the nontrivial Hecke character of modulus p5∞1∞2 for Q(

√
5).

Schappacher notes 2〈2/3〉−〈1/3〉 corresponds to a canonical Grössencharacter of
modulus p23 over Q(ζ3) which is also the same as an elliptic curve of conductor 27,
and similarly 〈1/2〉+〈3/4〉−〈1/4〉 for the Grössencharacter of modulus p32 over Q(ζ4)
or elliptic curve of conductor 32. With 〈5/8〉 + 〈7/8〉 − 〈1/2〉 there is stability
upon scaling by 3, and the field is thus Q(

√
−2), with the Grössencharacter having

modulus p52 corresponding to an elliptic curve with conductor 256.

9.2.1. Relations. Note that there can be relations between various of these Jacobi
motives. In particular, scaling by an invertible element modulo m does not change
the motive (at least over Q, though it can conjugate it over K), but there can also be
other relations that depend on occurrence of unital motives. For instance the Jacobi
sum motive for Z5 = 〈1/5〉 + 〈4/5〉 − 〈2/5〉 − 〈3/5〉 corresponds to the ζ-function

of Q(
√

5) by the above formalism, and one can induce this to the unital motive
on Q(ζ5). The Q-motives for θ1 = 2〈1/5〉 − 〈2/5〉 and θ2 = 〈1/5〉 + 〈2/5〉 − 〈3/5〉
can then be seen to be equal since θ1 = 3 ◦ θ2 + Z5. Indeed as rank 1 motives
on Q(ζ5) we have2

J(θ1) = J(3 ◦ θ2) ⊗
Q(ζ5)

J(Z5),

and J(Z5) is unital. Similarly, Z7 = 〈1/7〉 + 〈6/7〉 − 〈2/7〉 − 〈5/7〉 corresponds to
the ζ-function for the real cubic subfield of Q(ζ7), so that κ1 = 2〈1/7〉 − 〈2/7〉
and κ3 = 〈1/7〉+ 〈3/7〉 − 〈4/7〉 can then be seen to yield the same Q-motive since
κ1 − 5 ◦ κ3 = Z7. However, κ2 = 〈1/7〉 + 〈2/7〉 − 〈3/7〉 corresponds to a different
motive, as there is no scaling u mod 7 such that κ1 − u ◦ κ2 has effective weight 0.

Another example can be seen with θ1 = 2〈3/5〉+ 〈4/5〉 and θ2 = 2〈3/5〉 − 〈1/5〉.
Here these differ by Z = 〈1/5〉+ 〈4/5〉, and we can compute that

I = Ind
Q(ζ5)

Q(
√
5)

J(Z)

is in fact a Tate twist of the unital motive.3 Indeed, J(Z) over Q(
√

5) has an Euler
factor given by (1∓2pT+p2T 2) at primes p ≡ ±1 (mod 5) and (1+p2T 2) at primes
p ≡ ±2 (mod 5). Alternatively we can say that primes p ≡ ±1 (mod 5) each have
two eigenvalues ±p, while primes p ≡ ±2 (mod 5) have one eigenvalue −p2. This
implies that over Q(ζ5) for p ≡ 1 (mod 5) we get four eigenvalues of p, while for
p ≡ 4 (mod 5) we get two eigenvalues of (−p)2 as these primes do not split further,
and similarly with a single eigenvalue of (−p2)2 with p ≡ 2, 3 (mod 5). Thus in all
cases we find that there are f eigenvalues of pf , where f is the smallest positive
integer with 5|(pf − 1). This implies that I is a Tate twist of the unital motive
over Q(ζ5), and since J(θ1) = J(θ2)⊗ I over this field, we find that J(θ1) is a Tate

2Upon rewriting the Γp-expressions by the Gross-Koblitz formula, at the level of Gauss sums
for a prime p ≡ 1 (mod 5) we are asserting that gp(1/5)2/gp(2/5) = gp(3/5)gp(6/5)/gp(9/5), as

can be verified since gp(1/5)gp(4/5) = gp(2/5)gp(3/5) = p.
3This is the same argument that would show, e.g., that a quadratic Dirichlet character motive

over Q becomes unital when induced to the quadratic extension.
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twist of J(θ2) (indeed, it is a Tate twist over Q(ζ5) as we have written it, though in
general we could scale one of the θ’s and end up with the analogous result in terms
of Q-motives).

9.2.2. An example. We take θ = 〈1/12〉 + 〈5/12〉 + 〈1/2〉 which has a scaling
symmetry by 5, so that the field of definition is Q(ζ4). The motive is of weight 3
with h1,2 = h2,1 = 1. The conductor is p42 · 3 = 12, and the Euler factor at primes
which are 3 mod 4 is (1 + p3T 2)−1.

Writing p = a2 + 4b2, for p ≡ 5 (mod 12) the Euler factor is (1±4bpT +p3T 2)−1

with the plus sign when both or neither a ≡ ±1 (mod 12) and b ≡ 1 (mod 3)
holds, while for p ≡ 1 (mod 12) the Euler factor is given by (1 − 2apT + p3T 2)−1

where (a mod 12) ∈ {1, 3, 5}.

9.2.3. An Euler factor calculation with Gauss sums. We consider the example of
the Jacobi sum motive given by θ = 2〈1/8〉 + 〈3/8〉 + 〈7/8〉 − 〈1/2〉. Here there
are no scalings that fix θ, so that Kθ = Q(ζ8), while the weight is 3 with Hodge
type h1,2 = h2,1 = 2. Consider a prime p ≡ 5 (mod 8), so that f = 2 and the orbit
sets are {θ, 5 ◦ θ} and {3 ◦ θ, 7 ◦ θ}. The value of v is 3 for either orbit, so we get
that R(1) and R(5) are both

(−p)3
[
Γp(1/8)2Γp(3/8)Γp(7/8)/Γp(1/2)

][
Γp(5/8)2Γp(7/8)Γp(3/8)/Γp(1/2)

]
,

while R(3) and R(7) are just a rearrangement of this, namely

(−p)3
[
Γp(3/8)2Γp(1/8)Γp(5/8)/Γp(1/2)

][
Γp(7/8)2Γp(5/8)Γp(1/8)/Γp(1/2)

]
.

Using the distribution formula for Γp, namely Prop 11.6.14 of Cohen with s = 1/8
and N = 4, we have

Γp(1/8)Γp(3/8)Γp(5/8)Γp(7/8) = −
(−2

p

)
Γp(1/2)2/4[(−1/2)−(−1/2)\p],

and we can simplify the denominator by Corollary 11.6.3 of Cohen with s = 1/2, so
a = (p−1)/2 and a\p = 0, giving ωp(4)−(p−1)/2 = 1/ωp(2)p−1 = 1 as its evaluation.
Upon squaring, we are left with R(1) = (−p)3Γp(1/2)4−2 = p3 and find that the
Euler factor is (1− 2 · p3T 2 + p6T 4)−1.

9.3. Kummer twists. We can also consider twists of Jacobi motives. Schemati-
cally, upon taking parameters t ∈ Q? and ρ ∈ Q/Z, for the Euler factors at good
primes p we multiply R(a) by ωp(t) raised to the ρ(pf −1)

∑
i ap

i power. Note that
we need vp(t) = 0 to be able to compute the Teichmüller character ωp at t, and the
definition of f (from m) might need modification as explained below.

Indeed, we can consider the systemology of above with respect to a triple (θ, t, ρ),
or alternatively to a pair (θ, tρ) where with the latter we would consider the action
of roots of unity. With the former notation, we would rather want to define an
effective ρ, namely if t is an kth power we consider ρt = kρ, and the orbits definingK
and the Euler factors will then be with respect to the pair (θ, ρt), with m now
being the least common multiple of the denominators in θ and that of ρt. The
Hodge structure stays the same, except that the central hp,p signs are switched
when ρt = 1/2 and t is negative. Note that when t = 1 we are in the plain Jacobi
case, and similarly when ρt is integral.
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9.3.1. Twists of the Fermat cubic, and congruent number curve. Recall from above
that θ = 2〈2/3〉 − 〈1/3〉 corresponds to an elliptic curve of conductor 27. We
can take various twists of this by choosing t and ρ appropriately. In particular,
with ρ = 1/2 we will obtain quadratic twists (note that these do not enlarge the
field K), while ρ = ±1/3 will give cubic twists, with ρ = ±1/6 for sextic twists.
Similarly, for θ = 〈1/2〉+ 〈3/4〉− 〈1/4〉 we can take quartic twists of the associated
congruent number curve (of conductor 32) via ρ = ±1/4.

9.3.2. Various examples. One can already Kummer twist θ = 0 and obtain non-
trivial results. For instance, twisting by t1/2 gives the Kronecker character for t,
and 21/3 will yield the nontrivial 2-dimensional Artin representation of Q(21/3).
Similarly, with θ = 〈1/5〉 + 〈4/5〉 taking the Kummer twist by 51/5 results in a
Tate twist of the irreducible 4-dimensional Artin representation for Q(51/5), with
the conductor of the L-function being 59. This same conductor appears with the
Kummer twist by 51/5 of θ = 2〈3/5〉−〈1/5〉. Moreover, the four conjugate Kummer
twists here all have congruent Euler factors mod 5.
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L-functions of hypergeometric motives over Q
In this chapter we try to give as explicitly as possible a recipe for computing the

L-function data for a hypergeometric motive defined over Q. We shall not prove
many of our statements, and indeed most of them are currently conjectural.

Following Serre [?](?), an L-function can be specified by defining the degree d,
the weight w, the conductor N , the Γ-factors whose product is ΓM(s), and an
inverse Euler factor Ep at each prime (which is a polynomial of degree at most d).
In fact the L-function proper only depends on said Euler factors, being defined by

LM(s) =
∏
p

Ep(p
−s)−1,

and for the completed L-function

ΛM(s) = Ns/2LM(s)ΓM(s)

there is expected to be a sign εM = ±1 (explicit in principle) such that

ΛM(s) = εMΛM(w + 1− s)

The degree d is the same as the degree of the hypergeometric datum, while the
weight w needs to be adjusted as explained above with the Hodge function. This
ensures that the the pth coefficient of the L-series will be integral and generically
not divisible by p.

Our hypergeometric parameter shall again be t̃, the reciprocal of the parameter
appearing originally in the trace formula a la Katz. As previously noted, this is the
choice made in the GP/PARI and Magma implementations, so that the reader can
test the examples if desired.

10. Γ-factors

As explained below, the above Hodge polynomial determines the Γ-factors in the
presumed functional equation, except for the action of complex conjugation on the
hp,p pieces (these can occur in even weight).

There are three intervals, t̃ < 0, 0 < t̃ < 1, and 1 < t̃. In odd degree we have
that trace of complex conjugation is h+ − h− = ±1, while in even degree it can be
0 or ±2. Taking the u-value from the Table 8, we have h+ − h− = u · (−1)D.

degree t̃ < 0 0 < t̃ < 1 1 < t̃
odd +1 −1 +1
even 0 0 +2

Table 8. Central Γ-factor u-values

Note that this breaks the t → 1/t symmetry for positive t. However, in even
weight we have 1 ∈ B (with odd multiplicity), and so this fixes our normalisation.

One can compare the above with Table 5.3 of Deligne, where on Hp,p the complex
conjugation action is F∞ = (−1)p+ε, yielding a Γ-factor of ΓR(s + ε − p). That
is, h+ = hp,p,0 when p is even and h+ = hp,p,1 when p is odd. For instance,
for

(
PA,PB) =

(
Φ3

1Φ3,Φ
3
2Φ6) at t = 3/2, we have w = 2 and D = 0 so that

h+ − h− = 1, so that the Hodge structure is 2h0,2 + h1,1,ε with ε = 1. Similarly,
for

(
PA,PB) =

(
Φ2

3,Φ1Φ2Φ6) at t = 3/2, we have w = 2 and D = 1 so that

h+ − h− = −2, so that the Hodge structure is h0,2 + 2h1,1,ε with ε = 0.
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The full Γ-factor ΓM(s) is then given by

ΓM(s) =
∏
p<q

ΓC(s− p)hp,q · ΓR(s− p)h
p,p,0

ΓR(s+ 1− p)h
p,p,1

,

where ΓR(s) = Γ(s/2)/πs/2 and ΓC(s) = 2 · Γ(s)/(2π)s = ΓR(s)ΓR(s+ 1).

11. Euler factors and local conductors

We next describe how to compute the Euler factor and local conductor for a given
prime. There are four types of primes. First are the (potentially) wild primes, those
which divide an element of A ∪ B. Next are the tame primes, which are nonwild
primes with vp(t̃) 6= 0. Then come the “multiplicative” primes, which are primes
that are neither wild nor tame, and have vp(t̃−1) ≥ 0. Finally are the good primes,
which are primes that are none of the above. In other words, they do not divide a
cyclotomic index, and have vp

(
t̃(t̃− 1)

)
= 0.

Note that any of the above types of primes could be “good” in the classical sense,
namely that p does not divide the conductor and the Euler factor has full degree.

11.1. Good primes. The local conductor at a good prime p is trivial, while the
Euler factor is given by

E(T ) = exp
(
−
∑
n

Upn(t̃)Tn/n
)
.

With hypergeometric data of degree d, one need only compute the traces for
pf with f ≤ bd/2c, as the rest of the (inverse) Euler factor via use of the local
functional equation, namely that E(T ) = ±pwT dE(1/pwT ). To be able to use this,
one needs to know the sign, which we give below. When d is even and the sign
is −1, one can also omit the computation of the central term. We first note that
when the weight is odd, the sign is always +1.

11.1.1. Local sign, even weight. There are two cases for even weight. When the
degree is odd, note that 1 has odd multiplicity in B, and 2 has odd multiplicity
in A (this is just because these are the only cyclotomic polynomials of odd degree).
The β have an integral sum, and the character χu is the Kronecker character for

u = (−t̃)(1− t̃)
∏
b∈B

∆(Φb),

where ∆(Φb) is the discriminant of the bth cyclotomic polynomial.
When the degree is even, the assumption of even weight implies (by a symmetry

argument) again that 1 has odd multiplicity in B, and so does 2 in this case.
Thus the α have an integral sum this time, and the character χu is the Kronecker
character for

u = (1− t̃)
∏
a∈A

∆(Φa).

In all cases, for 0 ≤ j ≤ bd/2c, the (d − j)th coefficient in the Euler factor is the
jth coefficient multiplied by (−1)dχu(p)pw(d−2j)/2.
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11.1.2. Examples. For
(
PA,PB) =

(
Φ2

4,Φ
2
1Φ6) of weight 3, at t̃ = 5 the Euler

factor at p = 101 is given by

1− 1044T + 1500658T 2 − 1044 · 1013T 3 + 1016T 4.

For
(
PA,PB) =

(
Φ4

3,Φ
2
1Φ3

4) of weight 7, at t̃ = 5 the Euler factor at p = 19 is

1− 32656T + 1249543531T 2 + 11328313645088T 3 + 837256931112824684T 4+

197 · 11328313645088T 5 + 1914 · 1249543531T 6 − 32656 · 1921T 7 + 1928T 8.

Note that 196 divides the T 4 term here (whereas 101‖1500658 above).
For

(
PA,PB) =

(
Φ4Φ5,Φ1Φ2Φ2

3) of weight 2, the character is χu for u = 5(t̃−1).

Thus for t̃ = 7 and p = 41 the functional equation is odd, with the Euler factor
given by

1 + 23T − 123T 2 + 412 · 123T 4 − 414 · 23T 5 − 416T 6.

For
(
PA,PB) =

(
Φ2Φ3Φ5,Φ1Φ3

4) of weight 4, the character χu for u = −t̃(t̃−1).

Thus for t̃ = 7 and p = 31 the functional equation is odd (recall that one negates
the character value in the odd degree case), with the Euler factor given by

1+685T −1246448T 2−1088920632T 3−312c3T
4−316c2T

5−3110 ·685T 6−3114T 7.

Here 313|1088920632, which (as David points out) follows since Newton polygons
lie above Hodge polygons.

11.2. Multiplicative primes. These are primes p with vp(t̃ − 1) > 0 which do
not divide any of the cyclotomic data. They are “multiplicative” primes, in that p
exactly divides the conductorN . From the standpoint of hypergeometric differential
equations, there are (d − 1) independent holomorphic solutions about t̃ = 1, and
thus this many independent eigenvectors.

The method of p-adic Γ-functions can again be used to compute the traces (even
at p = 2), which can then be lumped into the Euler factor. However, the computa-
tion of the local sign is different.

Furthermore, when the weight is even and vp(t̃− 1) is also even, then this sup-
posed multiplicative prime is actually good (for instance,

(
PA,PB) =

(
Φ2,Φ1) with

t̃ = −8 at p = 3). In this case, one computes part of the Euler factor as below
from the hypergeometric trace, and then multiplies it by

(
1 − χu(p)pw/2T

)
to get

the full degree d polynomial. Here u = Kt0 where t̃− 1 = t0p
v with gcd(t0, p) = 1,

and K = (−1)(b1−1)/2 · 2
∏
v v

γv .

11.3. Local sign, odd weight (even degree). Here the sign can be determined
from χu, which is the Kronecker character of u = (−1)b1/2

∏
v v

γv where b1 is the
multiplicity of 1 in B (necessarily even). By §?? we also have u =

∏
v(ζ4v)γv .

Note that this sign is for the degree 1 piece. The complete Euler factor is given
by
(
1−χu(p)p(w−1)/2T

)
Ẽ(T ), where Ẽ is of degree (d−2) and satisfies a functional

equation with sign +1 (and weight w).

11.3.1. Local sign, even weight, even degree. Here χu is the Kronecker character
for u = −(−1)d/2(−1)(b1−1)/2 · 2

∏
v v

γ̃v , where the γ̃ come from [α+ 1/2, β]. That
is, shift all the α’s by 1/2, cancel any β intersection, and compute the γ̃ from
that. Alternatively, PA(−T )/PB(T ) =

∏
v(T

v− 1)γ̃v . As above, this sign is for the

degree 1 piece, given by (1− χu(p)pw/2T ).
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11.3.2. Local sign, odd degree (even weight). Here χu is the Kronecker character
of u = (−1)(d−1)/2

∏
v v

γ̂v , where the γ̂ come from [α, β+1/2]. That is, shift all the
β’s by 1/2, cancel any α intersection, and compute the γ̂ from that. Alternatively,
PA(T )/PB(−T ) = −

∏
v(T

v − 1)γ̂v . Here the sign is for the entire Euler factor.

11.3.3. Examples. Take
(
PA,PB) =

(
Φ3Φ12,Φ

2
1Φ2

6) of weight 3. The character

here is χu with u = −3. With t̃ = 8 and p = 7, we get the Euler factor as

(1− 7T )(1 + 8T + 105T 2 + 73 · 8T 3 + 76T 4).

For p = t̃−1 = 11, the Euler factor is (1+11T )(1−14T+22T 2−113 ·14T 3+116T 4).
Take

(
PA,PB) =

(
Φ3

4,Φ
3
1Φ2Φ6) of weight 4. This has character χu for u = −8.

With t̃ = 8 and p = 7, we get the Euler factor as

(1 + 49T )(1− 36T + 2758T 2 − 74 · 36T 3 + 78T 4).

For p = t̃− 1 = 11 we get (1− 121T )(1− 36T + 12694T 2 − 114 · 36T 3 + 118T 4).
Take

(
PA,PB) =

(
Φ2Φ4Φ10,Φ1Φ18) of weight 2. The character is χu for u = −6.

With t̃ = 14 and p = 13 the Euler factor is

1− 4T − 13T 2 + 132 · 13T 4 + 134 · 4T 5 − 136T 6.

11.4. Tame primes. These are primes that do not divide the cyclotomic data,
and for which vp(t̃) > 0 or vp(1/t̃) > 0. These correspond respectively4 to mon-
odromy about ∞ or 0. From the standpoint of hypergeometric differential equa-
tions, one has solutions like z1−βinFn−1(z), and when vp(t̃)βi is an integer, this
becomes holomorphic about 0. Of course, if there are repeated β’s, then one gets
log-factors, which are not holomorphic.

Given a polynomial Φrm‖PA, there will be Jordan blocks of size r with each of
the mth primitive roots of unity as eigenvalues. When m - vp(t̃), then from these
blocks one simply has a trivial Euler factor with conductor exponent rφ(m).

11.4.1. Nontrivial Euler factors. When t̃ is chosen with m|vp(t̃), then there will be
an Euler factor of degree φ(m) from these blocks, with the conductor exponent from
them being (r−1)φ(m). The weight of such an Euler factor (Corti and Golyshev?)
should be w + 1− r.

Consider Φm ∈ A at t̃ = t0 · pvm (where v > 0). Let q = pf be the smallest
power of p with m|(q − 1). We have a sequence of p-adic numbers[

ωp(Mt0)j(q−1)/mQq

(j(q − 1)

m

)
: 0 ≤ j < m

∣∣∣∣ gcd(j,m) = 1

]
.

Denoting the above sequence elements by η, we then have that
∏
η(1− ηT f ) is an

fth power, and so let E(T ) be its fth root (thus E has degree φ(m)). The weight
wm of this Euler factor should be w+1−am, where am is the multiplicity of m ∈ A.

It is exactly analogous for m ∈ B at t̃ = t0/p
vm. Note that when m = 1 we

simply have E(T ) = (1− pDT ) since w1 = w + 1− b1 = 2D.
When computing the Euler factor, we could again use a local functional equation,

but it is not that much worse simply to compute the above quantities to a sufficiently
high precision. A more worrisome difficulty is when q = pf is large, for then we
need to do (at least) q computations. Here it would be useful to know (say) when

4This is due to our choice of t̃. With the opposite choice, then vp > 0 corresponds to 0 and B.
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we are simply going to get a result like (1 ± pwmφ(m)/2Tφ(m)), which should be
determinable via cyclotomy and the local sign.

11.4.2. Examples and relation to Grössencharacters. An alternative method to
compute the Euler factors could be via Grössencharacters. However, I have never
been able to pin down the right normalisation, and it is usually easier to figure out
the correspondence in retrospect.

As an example, take
(
PA,PB) =

(
Φ5,Φ

4
1) for t̃ = 115. The Euler factor at 11 is

given by a canonical Grössencharacter of Q(ζ5) of ∞-type [(3, 0), (1, 2)] and ideal
of norm 52. Namely, the Euler factor is (1− 89T + 3861T 2 − 89 · 113T 3 + 116T 4).

Another example (showing the weight drop) is
(
PA,PB) =

(
Φ2

3,Φ
4
1) with t̃ = 73,

where the Euler factor at p = 7 is (1 + 13T + 49T 2). This matches the [(2, 0)]
Grössencharacter of Q(ζ3) whose modulus has norm 32.

11.5. Wild primes... ...

12. Sign of the (local/global) functional equation

...

13. Examples

...

14. Degeneration to t = 1

One can also consider the L-series obtained from t̃ = 1. Doing this results in an
L-function of smaller degree, with only the wild primes being bad. The L-factor will
be as with multiplicative primes, except in the odd weight case the degree 1 piece
is dropped (and so the total degree is two less than the original). The Γ-factors are
easily described except for the central piece in even weight. In the case where the
initial degree is odd we have h+ = h−. When the initial degree is even, we have
that h+ − h− = τ · (−1)d/2 where τ = +1 when u < 0 in §11.3.1, while τ = −1
when u > 0. Alternatively, h+ − h− = (−1)w/2+D, upon unwinding all this.

14.1. Examples. ...
Statement about checking L-functions numerically.
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Various experiments and data

15. The 14 unipotent families in degree 4

Consider the 14 cases of degree 4 hypergeometric data with PB = Φ4
1. For each

case, we verified the functional equation for t̃ = −1 to six or more digits, with the
conductor as given in Table 9. The case of PA = Φ3Φ4 has a quadratic Euler factor
of 1 + 8T 2 at p = 2. All the other wild Euler factors are trivial.

PA Φ4
2 Φ2

2Φ3 Φ2
3 Φ2

2Φ4 Φ3Φ4 Φ2
4 Φ5

cond 29 2735 36 210 2735 213 55

PA Φ2
2Φ6 Φ3Φ6 Φ4Φ6 Φ2

6 Φ8 Φ10 Φ12

cond 2935 2736 21035 2936 217 2955 21336

Table 9. Fourteen unipotent cases in degree 4

Comparatively, in degree 1 one has the conductor 23, while in degree 2 one has
conductors 25, 2 · 33, 27, and 2533. In degree 3, one can multiply any of the PA
from degree 2 by Φ2, and the resulting conductors are 27, 25 · 34, 29, and 2734 (in
all cases h− = 1). One can try the same in degree 5, but the conductors tend to be
a bit too large to test numerically.

A related idea is to consider
(
PA,PB) =

(
Φd2,Φ

d
1) at t̃ = −1. Checking the first 9

cases numerically, the conductor is 22d+1. Similarly, one can consider a family like(
PA,PB) =

(
Φd4,Φ

d
1Φd2) at t̃ = −1. Here for the first 4 cases the conductor as 21+6d.

16. L-function (im)primitivity and generalised Sato-Tate

Some cases have an imprimitive L-function (that is, it factors into smaller degree
L-functions – do not confuse this with tensor product of L-functions!). For instance,
when an Artin representation exists. (?!) There are also higher weight examples.

One way to test for imprimitivity is via the measure 1
π(X)

∑X
p |cp|2/pw. Assum-

ing conjectures for the Selberg class of L-functions, the limit as X →∞ will be an
integer, and is 1 precisely when the L-function is primitive. [This assumes one has

tested for poles via
∑X
p cp/p

w/2 ∼ rπ(X) and divided out by ζ(s)r if necessary]. In

general, a primitive product
∏
i Li(s)

ui gives a imprimitivity measure of
∑
i |ui|2.

This can be compared to factorisations of Euler factors.
From this, we can fairly easily execute an experimental test for primitivity; of

course, the convergence of the above sum depends on the conductor, but rather
weakly (say a logarithm). In practise, one will usually be within 10% of an integer
with the primes up to 1000 or 2000.

16.1. Sato-Tate analysis. In a similar manner, given a general Sato-Tate con-
jecture, we expect that the eigenvalue distribution to generically be either the full
symplectic or (special)5 orthogonal group. Using Larsen’s alternative, applicable
most specifically for positive weight and degree at least 3, this is equivalent to the
fourth moment of the trace of the eigenvalues (linear coefficient of the Euler factor)
being 3. This gives a useful test, though using higher moments can also aid in
guessing the distribution. Of course, when the hypergeometric data itself is already
imprimitive, there will be a different eigenvalue distribution.

5In deg 4 wt 2, the SO case has 4th moment 4, while O has 3. Else both have 4th moment of 3.
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We ran through all hypergeometric data (up to twist) up through degree 7 and
averaged across about fifty t̃-values for primes up to 1000. We found no positive
weight non-primitive hypergeometric data whose moments differed to any great
extent from that predicted by symplectic or orthogonal groups. Similarly, in the
data below, other than the t̃ = −1 symplectic cases noted in the next subsubsection,
we found no examples of t̃-values that gave a primitive L-function which did not
appear to have fourth trace moment equal to 3. However, we did find various
exceptional t-values where the L-function was imprimitive.

16.1.1. Special t̃-values. Given any
(
PA,PB) =

(
Φk2Φl3,Φ

k
1Φl6) the specialisation

to t̃ = −1 gives an alternative distribution. In the symplectic case (even degree) the
fourth moment appears to be 6, while in the orthogonal case, the second moment
is 2 (and thus already imprimitive), except for (k, l) = (5, 1) when it is 3. For the
case of (k, l) = (4, 0) the t̃ = −1 specialisation is related to the Siegel modular form
of level (2, 4) of van Geemen and van Straten [?], and comes from a tensor product.

16.2. Artin representations. In the Belyi cases of Artin representations, we see
imprimitivity in a quite noticeable way. Indeed, taking

(
PA,PB) =

(
Φ3,Φ1Φ2) with

the algebra x2(1−x)−1/Mt̃ as an example, one can simply solve t̃ = 1/Mx2(1−x)
and plug in x-values. The resulting t̃-values will all give imprimitive L-functions
(indeed, they will all have ζ(s) as a factor). Furthermore, the cubic polynomial has
discriminant 16(t̃ − 1)/27t̃2, and so when 3(t̃ − 1) is square the Galois group will
be Alt(3). There can also be (in general) splittings of a more complicated sort.

In general, we shall be most interested in the cases where the weight is as large
as possible, namely one (maybe two) less than the degree.

16.3. Degree 2 weight 1. For completeness we list the cases of degree 2. Here
each of the 10 elliptic curve families yields a parametrised family F of j-invariants
say jF (t̃), and we can solve jF (t̃) = j for the 13 CM invariants j of class number 1.
In Table 10 we list these up to twist; for

(
PA,PB) =

(
Φ3,Φ4) (and twist), where

jF (t̃) has degree 1, we give this parametrisation (there are 11 nondegenerate rational
t̃-solutions, see the

(
PA,PB) =

(
Φ3

2,Φ1Φ3) case of Table 12, and take 1
1−t̃ ).

PA PB t̃ j
Φ3 Φ2

1 −8 −3 · 1603

Φ3 Φ2
1 8/9 0

Φ3 Φ2
1 2 2 · 303

Φ3 Φ6 (125/128)± −3 · 1603

Φ3 Φ6 −1 123

Φ2
2 Φ2

1 1/2 123

Φ2
2 Φ2

1 −1, 2 663

Φ2
2 Φ3 1/2 123

PA PB t̃ j
Φ4 Φ2

1 63/64 −153

Φ4 Φ2
1 3/4 0

Φ4 Φ2
1 9/8 123

Φ4 Φ2
1 2 203

Φ4 Φ2
1 −3 2 · 303

Φ4 Φ2
1 9 663

Φ4 Φ2
1 −63 2553

Φ3 Φ4 123 t̃
t̃−1

Table 10. Degree 2 weight 1 CM elliptic curves
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16.4. Degree 3 weight 2. The results (possibly incomplete?) for degree 3 and
weight 2 are in Tables 12 and 13, where we don’t list twists. Of necessity, the
imprimitive L-functions must split into degree 1 and 2, with the degree 1 part from
a Dirichlet character (Tate-twisted to have weight 2), while the degree 2 part is
from a [(2, 0)] Grössencharacter of an associated imaginary quadratic field.

The notation for a Grössencharacter Ψ lists the∞-type in the superscript and the
discriminant of the imaginary quadratic field in the subscript. Inside the parenthesis
is an ideal, and in the case where K has class number 1 an norm-induced Hecke
character (possibly trivial) on it. Namely we have that ψm(a) = χm(Na) for a
that are coprime to m. When K does not have class number 1, then there is still
ambiguity of a Hilbert character (or choice of embedding) in any event, and here we
specify via values at distinguishing primes. Similarly, for example in the t̃ = −25920
case with

(
PA,PB) =

(
Φ2Φ4,Φ

3
1), we conflate the above notation to allow m = ζ5

and indicate the trace at 13 to distinguish.
The

(
PA,PB) =

(
Φ3

2,Φ1Φ3) contains the various class number 1 j-invariants,
and indeed this can somehow be realised as the “symmetric square” (up to twist)
of the

(
PA,PB) =

(
Φ3,Φ4) case above. Note that for p = 7, 13, 19, 43, 67, 163 the

conductors here are merely p, rather than p2 as in the elliptic curve case. The(
PA,PB) =

(
Φ3

2,Φ1Φ6) case similarly has 11 exceptional t̃-values, with prime fac-

tors of (p+ 1)/4 appearing. The
(
PA,PB) =

(
Φ2Φ4,Φ1Φ3) case has 11 exceptional

t̃-values, but their (partial) classification eludes me.
The t̃-values for

(
PA,PB) =

(
Φ3

2,Φ
3
1) are (up to t̃ → 1/t̃, and noting also that

they use −t̃ in place of t̃) those appearing in Theorem 1.2 of Ahlgren, Ono, and
Penniston’s work on Zeta Functions of an Infinite Family of K3 Surfaces. [?] They
denote these as modular, showing in their §5 that these are the only ones which are
associated to a weight 3 modular form. Note, however, here we are only considering
rational t̃-values that induce an alternative distribution. For higher degree cases,
one might even expect that the number of expectional t̃-values over Q̄ is finite.

Our t̃-values here correspond to the 7 exceptional values for
(
PA,PB) =

(
Φ4,Φ

2
1),

upon taking t̃ → 1 − t̃ from Table 10. Indeed, we have (see AOP, up to notation)
that Sym2H({4}, {1, 1}|t̃) = H({2, 2, 2}, {1, 1, 1}|1− t̃)⊗ χt̃(t̃−1).

PA PB #
Φ3

2 Φ3
1 7

Φ2Φ3 Φ1Φ6 15
Φ2Φ3 Φ1Φ4 12

Φ3
2 Φ1Φ3 11

Φ2Φ4 Φ3
1 14

Φ3
2 Φ1Φ6 11

Table 11. Counts of exceptional t in degree 3 and weight 2

16.5. Degree 4. One can list Artin/Belyi splittings as before for weight 0. In
weight 1, I suspect that there could be families of genus 2 curves whose Jacobian
splits as a product of two elliptic curves. I generated some data for weight 2, but it
seems hard to catalogue, as the the splittings involve a 3-dimensional piece that is
not easy to name. None of them appeared to split into two 2-dimensional parts.6

6In this dimension, it seems that SO has a different fourth moment than O, namely 4 instead
of 3, generating much “exceptional” data.
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PA PB t̃ decomposition N

Φ3
2 Φ3

1 −1 χ−4 ⊕Ψ2,0
−8(p22, ψ−4) 27

Φ3
2 Φ3

1 −1/8 χ−4 ⊕Ψ2,0
−4(p22, ψ1) 26

Φ3
2 Φ3

1 4 ζ ⊕Ψ2,0
−3(2OK , ψ1) 223

Φ3
2 Φ3

1 1/64 ζ ⊕Ψ2,0
−7(OK , ψ1) 7

Φ2Φ3 Φ1Φ6 −1 ζ ⊕Ψ2,0
−24(OK , p2 → 2) 233

Φ2Φ3 Φ1Φ6 −1/27 ζ ⊕Ψ2,0
−84(OK , p2 → 2, p3 → 3) 22 · 3 · 7

Φ2Φ3 Φ1Φ6 125/27 ζ ⊕Ψ2,0
−120(OK , p2 → 2, p3 → 3) 23 · 3 · 5

Φ2Φ3 Φ1Φ6 256/135 ζ ⊕Ψ2,0
−3(5OK , ψ5) 3 · 52

Φ2Φ3 Φ1Φ6 −28337/56 χ21 ⊕Ψ2,0
−3
(
7OK , ψζ7 , p19 →

11±21
√
−3

2

)
3 · 73

Φ2Φ3 Φ1Φ6 −156/173 χ17 ⊕Ψ2,0
−102(OK , p2 → 2, p3 → −3) 2 · 3 · 172

Φ2Φ3 Φ1Φ6 36/56 χ−4 ⊕Ψ2,0
−228(OK , p2 → 2, p3 → −3) 24 · 3 · 19

Φ2Φ3 Φ1Φ6 −116/3356 ζ ⊕Ψ2,0
−372(OK , p2 → 2, p3 → 3) 22 · 3 · 31

Φ2Φ3 Φ1Φ4 −210/37 ζ ⊕Ψ2,0
−19(OK , ψ1) 19

Φ2Φ3 Φ1Φ4 −53/37 ζ ⊕Ψ2,0
−40(OK , p2 → 2) 235

Φ2Φ3 Φ1Φ4 210/74 χ−3 ⊕Ψ2,0
−51(OK , p3 → −3) 3217

Φ2Φ3 Φ1Φ4 27/196 χ−7 ⊕Ψ2,0
−84(OK , p2 → 2, p3 → −3) 22 · 3 · 72

Φ2Φ3 Φ1Φ4 56/72114 χ−7 ⊕Ψ2,0
−168(OK , p2 → 2, p3 → −3) 23 · 3 · 72

Φ2Φ3 Φ1Φ4 −153/74 χ8 ⊕Ψ2,0
−30(OK , p2 → 2, p3 → −3) 24 · 3 · 5

Φ2Φ3 Φ1Φ4 56/2237 ζ ⊕Ψ2,0
−52(OK , p2 → 2) 2213

Φ2Φ3 Φ1Φ4 −210335/114 χ5 ⊕Ψ2,0
−3(5OK , ψ1) 3 · 53

Φ2Φ3 Φ1Φ4 56/24112 χ33 ⊕Ψ2,0
−132(OK , p2 → 2, p3 → −3) 2232112

Φ2Φ3 Φ1Φ4 −156/2674192 χ57 ⊕Ψ2,0
−228(OK , p2 → 2, p3 → −3) 2232192

Φ2Φ3 Φ1Φ4 56113/3774 ζ ⊕Ψ2,0
−88(OK , p2 → 2) 2311

Φ2Φ3 Φ1Φ4 −21056/3774 ζ ⊕Ψ2,0
−43(OK , ψ1) 43

Φ3
2 Φ1Φ3 −64/125 ζ ⊕Ψ2,0

−7(OK , ψ1) 7

Φ3
2 Φ1Φ3 −33/29 ζ ⊕Ψ2,0

−11(OK , ψ1) 11

Φ3
2 Φ1Φ3 −1/29 ζ ⊕Ψ2,0

−19(OK , ψ1) 19

Φ3
2 Φ1Φ3 −9/64000 ζ ⊕Ψ2,0

−3(p23, ψ1) 33

Φ3
2 Φ1Φ3 −1/803 ζ ⊕Ψ2,0

−43(OK , ψ1) 43

Φ3
2 Φ1Φ3 −1/4403 ζ ⊕Ψ2,0

−67(OK , ψ1) 67

Φ3
2 Φ1Φ3 −1/533603 ζ ⊕Ψ2,0

−163(OK , ψ1) 163

Φ3
2 Φ1Φ3 27/125 χ−4 ⊕Ψ2,0

−8(p22, ψ−4) 27

Φ3
2 Φ1Φ3 4/125 χ−4 ⊕Ψ2,0

−3(4OK , ψ−4) 263

Φ3
2 Φ1Φ3 8/113 χ−8 ⊕Ψ2,0

−4(4OK , ψ1) 29

Φ3
2 Φ1Φ3 64/853 χ−4 ⊕Ψ2,0

−7(4OK , ψ−4) 267

Table 12. Deg 3 wt 2 imprimitive L-functions (up to twist), part 1

An imprimitive weight 3 example would necessarily split into two 2-dimensional
parts: one with Hodge structure (2, 1), presumably a Tate twist of an elliptic curve;
and the other with Hodge structure (3, 0), presumably from a weight 4 newform.

I found a few examples that split here, given in Table 14. Here f180 is the
weight 4 newform

∑
n cnq

n of level 180 with c11 = 30, while f54 has level 54 and
c11 = −57. The Grössencharacter in the first case corresponds to the elliptic curve
of conductor 36. In the second case, p = 2 is partially good in both factors. Both
of these can also be twisted, of course.
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PA PB t̃ decomposition N

Φ2Φ4 Φ3
1 32 χ−3 ⊕Ψ2,0

−24(OK , p2 → −2) 2332

Φ2Φ4 Φ3
1 34/28 ζ ⊕Ψ2,0

−7(OK , ψ1) 7

Φ2Φ4 Φ3
1 34/25 χ−4 ⊕Ψ2,0

−4(p22, ψ1) 26

Φ2Φ4 Φ3
1 34 χ−8 ⊕Ψ2,0

−40(OK , p2 → −2) 265

Φ2Φ4 Φ3
1 −22 χ−4 ⊕Ψ2,0

−20(OK , p2 → −2) 245

Φ2Φ4 Φ3
1 −243 χ−3 ⊕Ψ2,0

−4(3OK , ψ1) 2233

Φ2Φ4 Φ3
1 −32/24 χ−3 ⊕Ψ2,0

−3(2OK , ψ1) 2232

Φ2Φ4 Φ3
1 −2234 χ−4 ⊕Ψ2,0

−52(OK , p2 → −2) 2413

Φ2Φ4 Φ3
1 −26345 χ−20 ⊕Ψ2,0

−4(5OK , ψζ5 , p13 → 12± 5i) 2453

Φ2Φ4 Φ3
1 −632/28 χ−7 ⊕Ψ2,0

−7(OK , ψ1) 72

Φ2Φ4 Φ3
1 74 χ−3 ⊕Ψ2,0

−8(OK , ψ1) 233

Φ2Φ4 Φ3
1 34112 χ−11 ⊕Ψ2,0

−88(OK , p2 → −2) 23112

Φ2Φ4 Φ3
1 38114 χ−8 ⊕Ψ2,0

−232(OK , p2 → −2) 2629

Φ2Φ4 Φ3
1 −223474 χ−4 ⊕Ψ2,0

−148(OK , p2 → −2) 2437

Φ3
2 Φ1Φ6 −32/24 ζ ⊕Ψ2,0

−3(p23, ψ1) 33

Φ3
2 Φ1Φ6 −22 ζ ⊕Ψ2,0

−15(OK , p3 → 3) 3 · 5
Φ3

2 Φ1Φ6 −1/24337 ζ ⊕Ψ2,0
−3
(
7OK , ψζ7 , p19 → −

11±21
√
−3

2

)
3 · 72

Φ3
2 Φ1Φ6 33/24 ζ ⊕Ψ2,0

−11(OK , ψ1) 11

Φ3
2 Φ1Φ6 −1/24 ζ ⊕Ψ2,0

−51(OK , p3 → 3) 3 · 17

Φ3
2 Φ1Φ6 −1/210 ζ ⊕Ψ2,0

−123(OK , p3 → 3) 3 · 41

Φ3
2 Φ1Φ6 2/33 χ−8 ⊕Ψ2,0

−3(8OK , ψ8) 293

Φ3
2 Φ1Φ6 1/2 χ−8 ⊕Ψ2,0

−24(p22, ψ−4, p3 → 3) 283

Φ3
2 Φ1Φ6 33/2 χ8 ⊕Ψ2,0

−8(p22, ψ−4) 27

Φ3
2 Φ1Φ6 −1/80 ζ ⊕Ψ2,0

−3(5OK , ψ5) 3 · 52
Φ3

2 Φ1Φ6 4/125 χ−20 ⊕Ψ2,0
−15(4OK , p3 → 3) 26 · 3 · 52

Table 13. Degree 3 weight 2 imprimitive L-functions, part 2

PA PB t̃ decomposition N

Φ3Φ4 Φ4
1 −1/4 Ψ2,1

−3(2p3, ψ0)⊕ f180 24345
Φ2

3 Φ4
1 −8 E54a ⊕ f54 2236

Table 14. Degree 4 weight 3 imprimitive L-functions

PA PB t̃ N Euler factor
Φ5

2 Φ5
1 −4 245 1

Φ5
2 Φ5

1 −1024 41 1 + 5T + 10T 2 + 80T 3 + 256T 4

Φ2Φ3Φ4 Φ5
1 −16/27 2243

(1− 4T )(1− 16T 2)

1 + 14T + 102T 2 + 3414T 3 + 38T 4

Φ3
2Φ4 Φ5

1 16 2215 (1− 4T )(1 + 6T + 16T 2)

Φ2Φ2
3 Φ3

1Φ6 4/27 69
(1− 4T ) · (1 + 4T )(1 + 2T + 16T 2)

(1− 9T ) · (1 + 15T + 81T 2)

Φ3
2Φ3 Φ5

1 −1/27 247
1− 16T 2

1 + 8T + 30T 2 + 348T 3 + 38T 4

Table 15. Degree 5 weight 4 imprimitive L-functions
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16.6. Higher degrees. David Roberts notes the example
(
PA,PB) =

(
Φ5

2,Φ
5
1) of

degree 5 and weight 4, where t̃ = −4,−210 both exhibit imprimitivity. In each case
there is a factor of ζ(s− 2) in the L-function. In the first case the conductor is 80,
while in the second case the conductor is 41 with an inverse Euler factor at 2 of
(1 + 5T + 10T 2 + 5 · 24T 3 + 28T 4). We have found four additional examples, again
all having a factor of ζ(s− 2) in the L-function. In various cases deriving the good
Euler factor from the hypergeometric trace formula with vp(Mt̃) = 0 was useful,
either directly, or giving a good guess in the correct direction.

17. Symmetric powers

The above imprimitivity note was made after I failed to be able to numerically
compute L

(
Sym2H−1, s

)
for the data H =

(
PA,PB) =

(
Φ3

2,Φ
3
1). In fact, the Sym2

L-function splits as ζ(s− 2)2 · L
(
Ψ2,0
−8(OK , ψ1), s− 1

)
· L
(
Ψ4,0
−8(OK , ψ1), s

)
.

An example with a primitive L-function is L
(
Sym2H2, s

)
= ζ(s − 2)L(U5, s).

Here the Sym2-conductor is 210, and the Euler factor of U5 at 2 is trivial.
One can easily go higher in the imprimitive cases. For instance,

L(Sym3H−1, s) = L(χ−4, s− 3)2 · L
(
Ψ2,0
−8, s− 2

)2 · L(Ψ4,0
−8, s− 1

)
· L
(
Ψ6,0
−8, s

)
,

where all Grössencharacters Ψ are for (p22, ψ−4). Note that the total conductor
is 224, which gives a sense that primitive cases will be hard to test numerically.

Here is a way to acknowledge that Sym2 of a degree 3 L-function should have
at least one factor of ζ(s) (or the trivial representation). By Newton the generic
Sym2 Euler factor looks like (1− bpT + · · · ) where bp = c2p − cp2 with the original

Euler factor as (1 − cpT + cp2T
2 + · · · ). Now the assumption of degree 3 implies

cp2 = −pw/2χ(p)cp by duality, and so we find bp = cp(χ(p)pw/2 + cp). Upon noting

χ(p)cpp
w/2 has mean 0, one is left with c2p, and so we surmise that the pole-order

of Sym2 is the imprimitivity measure of the original L-function (for degree 3).
Another way to conclude the same is probably to use representation theory of

orthogonal groups. Indeed, the mth symmetric power of a degree 3 orthogonal
L-function has the (m− 2)nd as a factor (upon suitable translation), and one gets
a “new” constituent of degree 2m+ 1 at each step.

17.1. Assorted examples. We catalogue some examples that appear in the L-
series chapter of the Magma Handbook [?]. In Table 16, we list a hypergeometric
datum and a t̃-value, with its degree, weight, and conductor. Then we list a sym-
metrization to apply, and the resulting degree, weight and conductor, and the Euler
factor at 2 if nontrivial. The Euler factors at other primes can be computed from
the action of the symmetrization on Frobenius eigenvalues.

Note that we take the “new” part of the various symmetrizations of the orthogo-
nal or symplectic data (see [?], or Magma handbook). For instance, the symmetric
powers of a degree 3 orthogonal representation have degrees 6, 10, 15, . . ., but these
split up as (1 + 5), (3 + 7), (1 + 5 + 9), . . ., since the irreducible representations of
SO(3) are all of odd degree.7 Similarly, the [2]-symmetrization (symmetric square)

7There can be various twisting when transferring this fact to L-functions. For instance, the
[2, 1]-symmetrization of a degree 3 orthogonal L-function has degree 8, splitting as the original
L-function multiplied by the [2]O-symmetrization twisted by the determinant (which can be viewed

a degree 1 L-function corresponding to the [1, 1, 1]-symmetrization) Or a more simple example,
the [1, 1]O-symmetrization is the original L-function twisted by its determinant.



31

PA PB t̃ d w N Sym d w N Euler factor
Φ3

2 Φ3
1 1/2 3 2 28 [3]O 7 6 218

Φ3
2 Φ3

1 2 3 2 29 [4]O 9 8 218 (1− 24T )
Φ5

2 Φ3
1Φ4 1 4 4 27 [2]O 9 8 215 (1− 24T )

Φ5
2 Φ3

1Φ4 1 4 4 27 [2, 2]O 10 16 221

Φ5
2 Φ5

1 1 4 4 28 [2]O 9 8 212 (1 + 28T 2)(1 + 24T )
Φ5

2 Φ5
1 1 4 4 28 [2, 2]O 10 16 212 (1− 28T )2(1 + 28T )2

Φ2
4 Φ2

1Φ2
2 2 4 1 216 [1, 1]Sp 5 2 216

Φ4Φ4
2 Φ6

1 1 4 5 28 [1, 1]Sp 5 10 28

Φ3
4 Φ1Φ5

2 1 5 4 211 [1, 1] 10 8 224

Table 16. Various symmetric powers

of an orthogonal degree 4 representation has degree 10 with a trivial constituent,
thus yielding a new part of degree 9, while the [2, 2]-symmetrization is itself of
degree 20, with both a trivial constituent and one from the [2]-symmetrization.

For the symplectic case, we list two examples of degree 4 and their alternating
squares ([1, 1]-symmetrizations), which is naturally a degree 6 representation but
has a trivial constituent. Conversely, for an orthogonal degree 5 L-function the
[1, 1]-symmetrization does not split, and the “new” part has the full degree of 10.

Some partial information about conductors can sometimes be computed using
Swan slopes. For instance, with

(
PA,PB) =

(
Φ5

2,Φ
5
1) the Swan conductor (at 2)

for the [2]O-symmetrization is 15 − 9 = 6 (though computing this is nontrivial),
which when added to the tame conductor 9 − 3 = 6 gives the listed result of 12.
Similarly, the [2, 2]O-symmetrization here has Swan conductor is 16− 10 = 6, and
again when adding the tame conductor 10− 4 = 6 we get 12 as listed. Incidentally,
this [2, 2]O-symmetrization has a ζ(s − 8) factor dividing its L-function (and thus
a pole), even though this is not forced by general group theoretic considerations.

18. Data at t̃ = 1

One can also gather data for the t = 1 degeneration of a hypergeometric datum.
The degree of the L-function drops by 1 in even weight and by 2 in odd weight. The
Euler factors at non-wild primes can be computed by treating them as multiplicative
primes (§11.2),

18.1. Hodge structure. In odd weight the Hodge structure loses one of the cen-
tral Hp,q pieces with q−p = 1, while in even weight it loses one of the central Hp,p,ε

pieces. When the hypergeometric datum has odd degree (so that the degree of the
L-function is even), then the eigenvalues of complex conjugation are equalised so
that h+ = h−. When the hypergeometric datum has even degree, the subtracted
piece is Hp,p,ε with ε = (−1)(b1−1)/2.

18.2. Twisting character. The t̃ = 1 degeneration of a hypergeometric datum
and its twist are related by twisting the resulting L-functions by the Kronecker
character corresponding to (−1)w+1

∏
v Disc(Φv) where w is the weight and v runs

over all cyclotomic indices in A ∪ B.
In particular, when the twisting factor is 1 the twists give the same HGM (and

L-function). But there are additional examples of differing data giving the same
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HGM at t̃ = 1, for instance
(
PA,PB) =

(
Φ4,Φ3Φ6) and

(
PA,PB) =

(
Φ2

2Φ4,Φ12)
are both associated to the elliptic curve isogeny class 864a.

18.3. Poles and imprimitivity. Looking at the Belyi examples (§5.1) one finds
that except for the (highly imprimitive) examples with a = b, that the t̃ = 1
degeneration will have the Riemann ζ-function as a constituent of its L-function,
and thus have a pole. There are other weight 0 examples, and indeed some with
higher weight that we mention below.

As before, one might expect there to be various splitting of weight 1 data from
split Jacobians, and in general higher weight should show fewer splittings.

18.3.1. Degree 6 symplectic examples. The examples of odd weight in degree 6 will
have L-functions of degree 4, which could then split into two pieces of degree 2.
In Tables 17-19 we list these examples, pairing them by twists when appropriate.
Note that having an imprimitive hypergeometric datum is not overly correlated
with having a split L-function for the t = 1 degeneration (up to twist there are six
weight 1 data that are 3-imprimitive in degree 6, of which two appear in the table).

PA PB decomp notes
Φ5Φ6 Φ2

1Φ3Φ4 50B,300A
Φ2

2Φ4Φ6 Φ3Φ10 400C,1200L
Φ5Φ6 Φ2

1Φ2
2Φ3 50B,75C

Φ3Φ10 Φ2
1Φ2

2Φ6 50A,75A
Φ9 Φ18 648B,648D 3-imprimitive, twists by −3 of each other
Φ7 Φ14 392C,392F

Φ5Φ6 Φ3Φ10 20A,300D
Φ2

2Φ10 Φ2
1Φ5 40A,200B

Φ2
2Φ2

6 Φ2
1Φ2

3 24A,72A 3-imprimitive, twists by −3 of each other

Table 17. Splittings for t̃ = 1 data in degree 6 weight 1

PA PB w N ap w N ap
Φ3Φ10 Φ4

1Φ6 4 100 (26, 45, 44) 4 300 (−7,−54,−55)
Φ4

2Φ3 Φ5Φ6 4 100 (−26, 45,−44) 4 300 (7,−54, 55)
Φ3Φ5 Φ6Φ10 4 40 (−34, 16, 58) 4 600 (4,−28,−16)
Φ2

2Φ5 Φ2
1Φ10 4 10 (−8,−4, 12) 4 50 (2, 26,−28)

Φ4
2Φ6 Φ4

1Φ3 4 8 (−2, 24,−44) 4 24 (14,−24,−28)

Table 18. Splittings for t̃ = 1 data in degree 6 weight 3

PA PB w N ap w N ap
Φ3

3 Φ3
6 4 72 (−16,−12,−64) 6 72 (−16, 12,−448)

Φ2
2Φ2

3 Φ2
1Φ2

6 4 18 (−6,−16,−12) 6 6 (−66, 176,−60)
Φ4

2Φ3 Φ4
1Φ6 4 36 (18, 8,−36) 6 4 (54,−88, 540)

Φ6
2 Φ6

1 4 8 (−2, 24,−44) 6 8 (−74,−24, 124)

Table 19. Splittings for t̃ = 1 data in degree 6 weight 5
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PA PB w N ap
Φ4

3 Φ4
6 6 36 (−54,−88,−540)

Φ2
2Φ3

3 Φ2
1Φ3

6 6 18 (96,−148,−384)
Φ4

2Φ2
3 Φ4

1Φ2
6 6 576 (6,−40,−564)

Φ6
2Φ3 Φ6

1Φ6 6 4 (54,−88, 540)
Φ8

2 Φ8
1 6 4 (54,−88, 540)

Table 20. Degree 2 pieces of t̃ = 1 splittings in degree 8 weight 7

18.3.2. A maximal weight imprimitive family. Similarly to the data with t̃ = −1,
there is a symplectic family in maximal weight which (experimentally) always splits,
namely

(
PA,PB) =

(
Φk2Φl3,Φ

k
1Φl6) with k even.

For degree 10 hypergeometric data at t̃ = 1, thus of an L-function of degree 8,
the L-functions for these families split into two pieces of degree 4.

18.3.3. Sundry. There is a four-fold splitting for the 6-imprimitive Belyi example
given by

(
PA,PB) =

(
Φ4Φ12,Φ1Φ2Φ3Φ6), where the t̃ = 1 degeneration splits

as χ−4 ⊕ χ8 ⊕ χ12 ⊕ θ122 where θ122 is a 2-dimensional Artin representation of
conductor 144 over the octic field y8 − 8y6 + 12y4 − 8y2 + 4

There is one weight 4 splitting example from primitive degree 10 hypergeometric
data, namely

(
PA,PB) =

(
Φ3

3Φ8,Φ1Φ3
2Φ3

6) which has a pole, with its twist also
being imprimitive.

There are (up to twist) three weight 4 examples of splittings (all primitive) in de-
gree 11:

(
PA,PB) =

(
Φ2Φ3

3Φ12,Φ1Φ8Φ9),
(
PA,PB) =

(
Φ2Φ2

3Φ4Φ2
6,Φ1Φ12Φ18) and(

PA,PB) =
(
Φ5

2Φ3
6,Φ

3
1Φ3

3Φ4). Each of these has a ζ-constituent (the same is true
for the twist of the third), and third splits further into pieces of dimension 2 and 7,
the smaller piece being associated to (a Tate twist) of the (2, 0) Grössencharacter

for Q(
√
−3) with modulus 2 (namely Ψ2,0

−3(2OK , ψ1) in previous notation). Here
(and in other places), we inferred the splitting from what the factorization of Euler
factors at small primes might suggest.

18.4. Analytic rank beyond the sign. David Roberts noted the first example
of a t = 1 degeneration (in odd weight) having extra vanishing8 for its central value,
and we give a complete catalogue of known examples below.

We should first note that when the sign of the functional equation is even, then
it seems that observed analytic rank 2 is quite common when Φ1 is not part of the
hypergeometric data, and conversely is quite rare when it is.

18.4.1. Degree 4, weight 1. Here 32 of the 74 examples have even parity, and 28 of
the 32 have Φ1 as part of the hypergeometric data, with all 28 having rank 0. On
the other hand, 3 of the remaining 4 cases have observed analytic rank 2, namely(
PA,PB) =

(
Φ2

3,Φ8) and its twist which each give the elliptic curve 3456l, and also(
PA,PB) =

(
Φ10,Φ12) which gives 21600ct. The datum

(
PA,PB) =

(
Φ3Φ4,Φ

2
2Φ6)

has rank 0.
All 42 of the odd parity examples have analytic rank 1. It is also the case that

only one of these 42 has Φ2
1 involved, namely

(
PA,PB) =

(
Φ8,Φ

2
1Φ2

2).

8Here “extra vanishing” means any vanishing not forced by the functional equation, including
when breaking down into primitive constituents of the L-function.
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18.4.2. Degree 4, weight 3. Here 22 of the 47 examples have even parity, of which
18 have Φ1 involved. One of these 18 has observed analytic rank 2, namely(
PA,PB) =

(
Φ12,Φ

4
1) which is associated to a modular form of level 864. All 4

of those which exclude Φ1 have rank 2, including
(
PA,PB) =

(
Φ4

2,Φ12) (the twist

of the above),
(
PA,PB) =

(
Φ2

3,Φ
2
4) and its twist (both again associated to this

same modular form of level 864), and
(
PA,PB) =

(
Φ2

3,Φ10) which is associated to
a modular form of level 5400.

Again all 25 odd parity examples are analytic rank 1, and 7 of these involve Φ4
1.

18.4.3. Degree 6, weight 1. Here we have 287 hypergeometric data, of which 168
have even parity and 119 have odd parity. Of the latter, two of them have observed
analytic rank 3, namely

(
PA,PB) =

(
Φ6Φ8,Φ9) and its twist.

With even parity, there are 69 of analytic rank 0 and 99 of observed analytic
rank 2 (caveat, I did not check for higher ranks). The splitting is almost completely
based upon whether Φ2

1 is part of the hypergeometric data. The only example of
rank 2 with Φ2

1 extant is
(
PA,PB) =

(
Φ6Φ8,Φ

2
1Φ5), and the only example of rank 0

without it is
(
PA,PB) =

(
Φ2

2Φ4Φ6,Φ3Φ8).
Note that three of rank 2 examples are imprimitive (see Table 17), namely(
PA,PB) =

(
Φ9,Φ18),

(
PA,PB) =

(
Φ7,Φ14), and

(
PA,PB) =

(
Φ2

2Φ4Φ6,Φ3Φ10).
In each case we have a sum of two elliptic curves each of rank 1.

18.4.4. Degree 6, weight 3. There are 238 odd parity hypergeometric data here,
of which 5 have observed analytic rank 3 (see Table 21). The third and fourth are
the same motive.

PA Φ2
2Φ12 Φ2

2Φ12 Φ2
4Φ6 Φ3Φ2

4 Φ2
4Φ6

PB Φ14 Φ7 Φ18 Φ9 Φ10

Table 21. Degree 6 weight 3 cases of rank 3

Of the 249 even parity data, 80 of them have observed analytic rank 2. The only
rank 0 case where Φ1 does not appear is

(
PA,PB) =

(
Φ3Φ2

4,Φ
4
2Φ6), while there

are 8 cases where a datum with Φ1 has rank 2 (Table 22). The second and seventh
examples are the same motive.

PA Φ18 Φ18 Φ18 Φ18 Φ2
2Φ12 Φ2

2Φ10 Φ9 Φ7

PB Φ4
1Φ6 Φ4

1Φ3 Φ4
1Φ2

2 Φ2
1Φ2

4 Φ2
1Φ10 Φ2

1Φ12 Φ4
1Φ3 Φ2

1Φ12

Table 22. Degree 6 weight 3 cases of rank 2 with Φ1

Note that
(
PA,PB) =

(
Φ3Φ5,Φ6Φ10) and

(
PA,PB) =

(
Φ4

2Φ3,Φ5Φ6) are im-
primitive, and in both cases the constituents each have rank 1.

18.4.5. Degree 6, weight 5. There are 65 odd parity data here, and all have rank 1.
Of the 77 with even parity, 42 have Φ1 involved and all these have rank 0. The
35 others all have observed rank 2, with

(
PA,PB) =

(
Φ3

6,Φ
3
3) being the product of

two rank 1 constituents.
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18.4.6. Higher degree. The natural(?) conjecture might be that even parity data
that do not involve Φ1 have rank 2 (or higher?) except when Φ3 and Φ6 appear
on opposing sides and the rest of the data is products of various Φ2v . The three
known rank 0 cases are

(
PA,PB) =

(
Φ3Φ4,Φ

2
2Φ6),

(
PA,PB) =

(
Φ2

2Φ4Φ6,Φ3Φ8),

and
(
PA,PB) =

(
Φ3Φ2

4,Φ
4
2Φ6).

David Roberts has also computed the rank 2 example
(
PA,PB) =

(
Φ4

3,Φ
8
1),

which is degree 6 and weight 7 with conductor 39.

18.5. Root numbers. It looks difficult to determine the root numbers. For in-
stance

(
PA,PB) =

(
Φ2

3,Φ8) has even parity while
(
PA,PB) =

(
Φ2

3,Φ
2
2Φ4) has odd

parity, which might lead one to think that the local root numbers at 2 for Φ8

and Φ2
2Φ4 are opposites. However one finds that

(
PA,PB) =

(
Φ2

2Φ4,Φ
2
1Φ3) and(

PA,PB) =
(
Φ8,Φ

2
1Φ3) are both even parity, which seems to indicate that there is

something additional occurring.

18.6. Wild Euler factors. For all 1257 hypergeometric data of degree 6 (and 336
examples of lesser degree) we were able to (numerically) compute the conductor and
Euler factors at wild primes for the t̃ = 1 degeneration. Now included with Magma.

Expand this ...
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Two worked examples with p-adic monodromy

19. Worked example

This is my attempt to understand the relation of inertia and Euler factors to
hypergeometric differential equations, in the simplest case of

(
PA,PB) =

(
Φ2,Φ1).

Maybe it extends to other Artin cases (where again one has algebraic functions).
Here we have (maybe switching α and β) the differential equation

zθF (z) =

(
θ − 1

2

)
F (z) or z2F ′(z) = zF ′(z)− 1

2
F (z),

where θ = z d
dz and the solution is F (z) =

√
z
z−1 . Of course, this is only up to a

constant, but I think we want to choose the global normalisation so that F (∞) = 1.
At any rate, this appears to work.

We consider what happens to F (z) as a Cp-solution about z = t in the previous
parametrisation. We go through the various cases, at first considering p > 2.

19.1. Tame primes. When vp(t) > 0, this valuation v can either be even or odd.
When it is odd, writing t = t0p

v the solution about z = t is
√
t0
√
p · p(v−1)/2
√
pv − 1

+ F ′(t)(z − t) + · · · ,

and this is defined over a ramified extension of Qp, implying that the inertia group
is nontrivial (if I remember correctly). Thus the Euler factor is trivial, as expected.
The local conductor is p1, as the inertia is C2, hence tame for odd primes.

When v is even, writing t = t0p
v the solution is

√
−t0 pv/2√
1− t0pv

+ F ′(t)(z − t) + · · · .

The constant term is defined over Qp precisely when −t0 is square modulo p,
and else over an unramified extension. Thus inertia is trivial, while the action of
Frobenius fixes this solution when −t0 is square, and else negates it. So the Euler
factor is (1− χp(−t0)T ).

This agrees with the calculation given in the tame prime section (§11.4). That is,

there we get ωp(4t0)(p−1)/2 · (−1) · p · gp(0)/gp
(
p−1
2

)2
. Now the trivial Gauss sum is

gp(0) = −1 while the evaluation of quadratic Gauss sums gives gp
(
p−1
2

)2
=
(−1
p

)
p,

and the ωp-term is just χp(t0), so that we do indeed get χp(−t0).
The situation is analogous for vp(t) < 0. We then invert z → 1/z and get the

solution has constant term
√

1/(1− pv/t0), which is in Qp. Thus inertia is trivial
and Frobenius fixes the solution, giving (1− T ) as the Euler factor.

19.2. Multiplicative primes. With vp(t − 1) > 0 there are again two cases
depending on whether the valuation is odd or even. Writing t − 1 = pvt0, the

constant term of the power-series solution about z = t is given by
√

1+pvt0
pvt0

, and

this is in a ramified extension when v is odd. When v is even, it is in Qp precisely
when t0 is square. Thus we get

(
1− χp(t0)T

)
as the Euler factor.

Again this agrees with the formula given in §11.2 above, where K = 1 for this
data. Note that the differential equation seems to give the Euler factor, though the
hypergeometric trace does not in this case.
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19.3. Good primes. Here we plainly have
√

t
t−1 as the constant term of the

series expansion about z = t, and thus Frobenius fixes the solution when t(t − 1)
is a square modulo p. This agrees with the identification of the L-series as being
associated to the quadratic algebra Q

(√
t(t− 1)

)
.

19.4. The wild prime 2. Finally we get to the wild prime. In some sense this is
the most interesting (if also most tedious) case, as it should tell us how the 2-adic
solution of the differential equation relates to the conductor and Euler factor.

When v2(t) > 0 we write t = t02v and have
√
−t02v
1−2vt0 as the constant term of

the power-series expansion. When v ≥ 3 the denominator has a square root in Q2,
and we are left to analyse the extension Q2

(√
−t02v

)
. This has trivial inertia when

v is even and t0 ≡ 3 (mod 4), with trivial Frobenius action when t0 ≡ 7 (mod 8).
When v is odd the local conductor is 23; for even v and t0 ≡ 1 (mod 4) it is 22.

When v = 2, one proceeds similarly with the extension Q2

(√ −t0
1+4t0

)
, where the

inertia is as before, but the Frobenius action is now trivial (that is, the extension
is trivial) when t0 ≡ 3 (mod 8). When v = 1 one again has local conductor 23.

The above agrees with the L-series of the quadratic algebra, but this is kind of

obvious, seeing as how we took everything from F (z) =
√

z
z−1 .

The rest is tedious (and I think I convinced myself by now). In short, one is
able, at least in this case, to read off the local information at p from considering
inertia and Frobenius act on the Qp[[z]]-solution space around z = t.

20. Another worked example

Here I try to work out
(
PA,PB) =

(
Φ3,Φ1Φ2). I don’t know the general method

to derive the algebraic functions. I managed to get them via evaluating the power
series at enough points and interpolating/guessing. I get

F−(z) = 2−1/3z2/3
(
−2

z(1− z)
+

2

z(1− z)3/2

)1/3

=
z1/3

(1− z)1/2
(
1−
√

1− z
)1/3

,

F+(z) = 21/3z1/3
(

1/2

(1− z)
+

1/2

(1− z)3/2

)1/3

=
z1/3

(1− z)1/2
(
1 +
√

1− z
)1/3

.

The above expressions also show that F−(z)−F+(z) is holomorphic about z = 1,
Around z =∞, we write u = 1/z and get

F±(u) =
1√
u− 1

(√
u±
√
u− 1

)1/3
=

1

(u− 1)1/3

( √
u√

u− 1
± 1

)1/3

,

so that their difference will be holomorphic at u = 0, and their sum will be
√
u

times something holomorphic.
From symbolic algebra, I get that

F ′±(z) =

[ √
1− z

2z(1− z)2
∓ 1/6

z(1− z)

]
z1/3

(
1±
√

1− z
)1/3

.

About z = t we have F±(z) = F±(t) +F ′±(t)(z− t) +O
(
(z− t)2

)
, and the question

is how inertia and Frobenius act on these solutions.
It seems that a/the “natural” basis/scaling for the solution space is {S(z), D(z)}

where D(z) = F−(z)−F+(z) and S(z) =
√
−3 ·

[
F+(z) +F−(z)

]
(up to Q-factors).
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I am not sure from where this global normalisation is derived. The point is that
S(z) will incur an extra minus sign when Frobenius acts for primes p ≡ 2 (mod 3).

20.1. Tame primes. The first case has vp(t) > 0. Writing t = t0p
v we get (where

each term in the power series expansions is correct to its leading p-adic digit)

F−(z) ∼ p2v/3t1/30 (t0/2)1/3 +
2

3pvt0
t
1/3
0 pv/3(pvt0/2)1/3(z − t) +O

(
(z − t)2

)
,

F+(z) ∼ pv/3t1/30 21/3 +
1

3pvt0
t
1/3
0 pv/321/3(z − t) +O

(
(z − t)2

)
,

In particular, we find that there is nontrivial inertia when 3 - v. When 3|v there are
naturally two cases. When p ≡ 1 (mod 3) we have −3 ∈ Q2

p and so Frobenius fixes

the solutions when 2t0 ∈ Q3
p, with the action otherwise being diag(ζ3, ζ

−1
3 ); thus

the Euler factors are (1−2T +T 2) and (1 +T +T 2) respectively. In the case where
p ≡ 2 (mod 3) we have −3 6∈ Q2

p and 2t0 ∈ Q3
p, and so D(z) is fixed by Frobenius

while S(z) is negated due to the
√
−3, giving us an Euler factor of (1− T 2).

The second case has vp(1/t) > 0. Using the above u-expansion about ∞ and
writing t = t0/p

v, when v is odd we see Frobenius fixes F−(z) − F+(z) ∈ Qp[[z]],
while inertia is nontrivial on the sum. Thus the Euler factor is (1 − T ). When v
is even, the difference-solution D(z) is as before, while the leading term of S(z) is

p-adically close to
√
−3· (2/

√
t0)p

v/2

3
√
−1 . Thus S(z) is fixed by Frobenius when 3t0 ∈ Q2

p.

The overall Euler factor is (1− T )(1± T ), with the minus sign when 3t0 ∈ Q2
p.

20.2. Multiplicative primes. Here vp(t− 1) > 0. Writing t− 1 = pvt0 we have

F±(z) ∼ 1√
−pvt0

(1±
√
−pvt0)1/3 +O(z − t).

The difference D(z) is thus defined over Qp. The sum S(z) has leading term close

to 2
√
−3/
√
−pvt0, with nontrivial inertia when v is odd. When v is even, Frobenius

again acts trivially when 3t0 ∈ Q2
p. Thus the Euler factor is (1−T ) when v is odd,

and is (1− T )(1± T ) when v is even, with the minus sign when 3t0 ∈ Q2
p.

20.3. Good primes. First we consider the cases where 1 − t ∈ Q2
p, when we

have F±(t)/F ′±(t) ∈ Qp. Indeed, when p ≡ 2 (mod 3) we have F±(t) ∈ Qp also,
and so F±(z) are fixed by Frobenius. Thus D(z) is fixed and S(z) is negated, so
the Euler factor is (1 − T )(1 + T ). When p ≡ 1 (mod 3), we must consider if
t(1 ±

√
1− t) ∈ Q3

p. If so, then Frobenius fixes F±(t), and else it multiplies them

by ζ±3 [note that F−(z)F+(z) = z
1−z , fixing the product of cube roots]. In the former

case we get (1−T )2 as the Euler factor, and else (1−ζ3T )(1−ζ−13 T ) = (1+T+T 2).
For the second case we have that 1 − t 6∈ Q2

p. We write K = Qp(
√

1− t) and

need to determine whether t(1−
√

1− t) ∈ K3, For primes p ≡ 1 (mod 3) it seems
this is always the case (reciprocity law?). Thus Frobenius acts by negating

√
1− t,

sending F±(z) to −F∓(z), with Euler factor (1−T 2). Similarly, for p ≡ 2 (mod 3),
when t(1−

√
1− t) ∈ K3 we again have F±(z)→ −F∓(z) so that D(z) is fixed by

Frobenius, and indeed so is S(z) via the
√
−3 factor [which Frobenius negates], for

an Euler factor of (1− T )2. Else the action sends F±(z)→ −ζ±3 F∓(z), and we get
D(z) →

(
S(z) −D(z)

)
/2 and S(z) → −

(
S(z) + 3D(z)

)
/2 [the leading minus sign

from negating
√
−3], yielding a trace of −1 for an Euler factor of (1 + T + T 2).
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20.4. A special case. Note that when t = 343
100 the L-function is ζ(s)2. Indeed,

for good primes we have that (1− t) is square-equivalent to (−3). Thus for primes

p ≡ 1 (mod 3) we are interested in whether 73

(1+9)2

(
1 ± 32

5

√
−3
)

is a cube mod p,

which I guess follows from some sort of cubic reciprocity law. With p ≡ 2 (mod 3)
the relevant expression is again always in K3. This shows that the Euler factor is
(1− T )2 at all good primes, so by general nonsense it equals ζ(s)2 at all primes.

Indeed, the L-function is ζ(s)2 for any t = 1/Mx2(1−x) for which −3x2 +2x+1
is square (our example being the orbit x = 5/21, 20/21,−4/21).

20.5. Wild primes. Well, I guess one gets an algorithm to compute here, but I
don’t see it as any easier than doing the same with the Artin representations.
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TODO:

• Expand wild primes section (with data, FRV/David guesses)
• Wild primes for t = 1 (David’s slope stuff)
• Other non-Belyi cases (section 5) (maybe from Beukers/Heckmann?)
• Beukers/Mellitt on canonical schemes

21. Twisting

The term twisting refers to transforming hypergeometric data via adding 1/2 to
all elements in α and β. Alternatively (in the case over Q), all elements of A and B
with 2-valuation less than 2 are either doubled (valuation 0) or halved (valuation 1).
Our (A,B)-convention can cause them to be switched when this twisting is done.

The hypergeometric traces behave in a specified way upon twisting. Namely,
writing UHq (t) for the qth trace for parameter t with data H, (for good primes) the

twist T will have (here χu is the Kronecker character
(
u
·
)
, and ∆ is the discriminant)

UTq (t̃) = UHq (t̃±)χu(q) where u = (−t̃)(−1)w
∏

e∈A∪B
∆(Φe),

with the ± sign in the t̃-exponent as −1 when A and B are switched.


