
A DISCURSUS ON 21 AS A BOUND FOR RANKS OF ELLIPTIC
CURVES OVER Q, AND SUNDRY RELATED TOPICS

1. Introduction

In the last paragraph of [32, §4], it was mentioned that a “forthcoming paper” of
the author and A. Granville would give (heuristic) weight to the idea that (partic-
ularly if one ignores arithmetic issues) the number of curves of height up to X with
rank r should be bounded by X(21−r)/24+ε for r ≥ 1. Some related ideas appeared
in [34, §11], while herein we shall speak more directly of the general case of elliptic
curves over Q (not just in a twist family). As can be surmised, much of this work
is strongly influenced by conversations with A. Granville.

1.1. Notation. We shall find need to speculate on the number of curves of rank r
with: real-period reciprocal 1/Ω in a dyadic interval of size 1/Ω; regulator in
a dyadic interval of size R; and (absolute) discriminant in a dyadic interval of
size ∆. We denote this count by N(r,R,Ω,∆) where notation can be dropped
to indicate the counts without such restrictions.1 We also use the notation P in
place of N, where this is the probability rather than a count, and bars over the
arguments indicate which are unconditional.2 The “≈” symbol will be used in a
very liberal manner, essentially meaning a log-asymptotic, and similarly with the
“�” symbol. On the other hand, the “∼” symbol indicates a variable in a dyadic
interval, e.g., a ∼ A says a ∈ [A, 2A]. Finally, we often omit absolute values with the
a, b coefficients of an elliptic curve, with its discriminant, or for the co-ordinates of a
point. For instance, saying “log ∆E” should not cause any confusion when ∆E < 0.

2. Points in ellipsöıds

Let E be an elliptic curve (over Q) of rank r and regulator RegE . By counting
lattice points in ellipsöıds, one finds [21, Theorem 20.4.2] that the number of points
on E of canonical height less than H is asymptotically (γr ·#TorsE) ·Hr/2/

√
RegE

as H →∞, where #TorsE ≤ 16 by Mazur’s theorem [25] and γr is the volume of the
r-dimensional unit ball – we shall suppress these latter factors in the sequel. One
expects this to be valid once H is sufficiently larger than the height of the largest
generator (of a minimal generating set) of E(Q). A conjecture of Lang [23, p. 92]
predicts that canonical heights are � log ∆E , and so the above asymptotic should
be (at least) within a constant when H � RegE . For most curves (those without
skewed Mordell-Weil lattices), the switch-over should be around H ≈ Reg1/r

E .
There is also the difference between canonical and näıve heights. From a result

of Silverman [30] these differ by no more than ht(∆E) + ht(jE), which by the
ABC-conjecture [26] is � ht(∆E) = log ∆E � RegE . So for H � RegE we have

(1)
Hr/2√
RegE

� number of points up to näıve height H on a rank r curve,

where for now we ignore the implied constant, considering it more in §7 below.

1For instance, N(Ω,∆) would be the number of curves with reciprocal real-period of size 1/Ω
and discriminant of size ∆, with no restrictions on either the regulator or rank.

2So P(2̄,R,Ω,∆) is the probability that a curve with regulator, real period, and discriminant
of specified size has rank 2, while P(Ω̄,∆) is the probability that a curve with discriminant of
size ∆ has real period of size Ω.
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2 DISCURSUS ON RANKS OF ELLIPTIC CURVES

3. Recollections of real periods

Section 3.3 of [32] derives a heuristic count for the number of elliptic curves, and
also weights it by

√
ΩE to get a rank 2 heuristic. We can use a similar technique

to (partially) investigate the distribution of 1/ΩE . As in the cited source, for
simplicity our description is only for the positive discriminant case, but there are
no real difficulties in analogising it for negative discriminant.

We are thus interested in

Iκ =
∫ ∫

(1/Ω)κdu4 du6

where u4, u6 play the rôle of continuous variables for c4, c6 of an elliptic curve
(we are approximating a lattice point sum by an integral). We are ranging over
curves with discriminant of size ∆ so that (u3

4 − u2
6) ∼ 1728∆, with 1/Ω given by

1
πagm(

√
e1 − e2,

√
e2 − e2) with e1 > e2 > e3 roots of 4x3−(u4/12)x−(u6/216) = 0.

Here κ is a real parameter, and we shall see that any κ < 2 gives a convergent
integral, whereas we took κ = −1/2 in [32, §3.3].

The analysis of [32, §3.3] performs a co-ordinate transform to separate the dis-
criminant, leaving us with

Iκ ≈∆5/6+κ/12

∫ ∞
0

A(µ)κB(µ) dµ,

where with the reciprocal of the real period we have A(µ) = agm
(√
λ,
√
λ+ µ

)
with

λ = (
√
µ4 + µ − µ2)/2µ (or µλ(µ + λ) = 1/4), while B(µ) = 1/

√
µ4 + µ comes

from the Jacobian of the transformation.
We thus see that B(µ) → 1/µ2 as µ → ∞ and B(µ) → 1/

√
µ as µ → 0, while

A(µ) ≈ µ1/2/ logµ as µ → ∞ and A(µ) → 1/µ1/4
√

2 as µ → 0. This shows that
the µ-integral converges for any κ < 2. We compare I2 with (the convergent) Iκ
for κ = 2− 1

log ∆ , which then induces an extra factor of log ∆ with µ→ 0.
Our heuristic3 is then that the sum of 1/Ω2

E over curves E with discriminant of
size ∆ is �∆ log ∆, so that (suppressing the log) we have

(2) N(Ω,∆)�∆Ω2 or P(Ω̄,∆)�∆1/6Ω2,

the latter using the κ = 0 version of the above, namely that we expect N(∆) ≈∆5/6

curves with discriminant of size ∆. Furthermore, we have 1/ΩE � ∆1/12
E as noted

in [32, §6.2], so that P(Ω̄,∆) ≈ 1 when 1/Ω ≈∆1/12. Stated differently, the typical
size of the reciprocal of the real period is ∆1/12

E , a fact we shall use frequently below.

4. Heuristics with regulators

The next task will be to transfer a couple of estimates that are related to those
in [32, §3] to consider the effect of a regulator. This is related to the real period
and L-values by the Birch–Swinnerton-Dyer conjecture [2]. Although the L-value
distribution does not seem to be correctly predicted by random matrix theory (if
we have interpreted the latter properly), it is still in our minds when we later write
down bounds for such distributions. The reader who prefers to skip this analysis

3Mostly we replaced lattice-point sums by areal integrals. Making this rigourous implies (for

instance) the ABC conjecture, which is (roughly) equivalent (see [16]) to 1/ΩE � ∆
1/2
E .
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can safely simply take 1/ΩE ≈ ∆1/12
E and RegE ≈ 1/ΩE in the succeeding sections,

as the analysis here shows these are the dominant regions for our cases of interest.
An analysis as in [32, §3] gives an expectation of N(0,∆) ≈ N(1,∆) ≈ ∆5/6

and N(2,∆) ≈ ∆19/24, the latter up to a ∆o(1) factor that we shall suppress
throughout this paper (though we say more about it in §7 below).

Let us then try to consider N(1,R,Ω,∆). Throughout this paragraph we con-
sider E to have rank 1. We follow [32, (1)] at least at the rough level (the other
effects should either wash out or be negligible ∆o(1) contributions), and from ran-
dom matrix theory predict

Prob[L′E(1) ≤ t] ≈ t3/2 as t→ 0.

As the Tamagawa number (and other) contributions to the BSD-formula should
be ∆o(1), assuming XE is not typically large (see [7]) we restate this roughly as

Prob[RegE ≤ t/ΩE ] ≈ t3/2 as t→ 0.

Using N(1,∆) ≈∆5/6 we find that N(1,R,Ω,∆) = N(1,∆) ·P(1, R̄, Ω̄,∆) is

≈∆5/6 ·P(1, R̄,Ω,∆) ·P(1, Ω̄,∆) ≈∆5/6 ·R3/2Ω3/2 ·P(1, Ω̄,∆).

4.1. Yet this looks wrong for curves with small regulator, say R ≈ log ∆, for it
predicts N(1,R,∆)� ∆5/6 ·∆(−1/12)(3/2) = ∆17/24 (recall 1/Ω� ∆1/12), while
we can4 construct ∆3/4 such curves via (x, y, a) ∼ (∆1/6,∆1/4,∆1/3) and solving
for b in y2 = x3 + ax + b. In fact, we shall use these points of small height later
when determining how to calibrate the final rank heuristic.

However, we still might guess a bound Prob[L′E(1) ≤ t] � t1/2 as t → 0, and
similarly for higher derivatives (rather than increasing the t-exponent with the order
of the derivative,5 as per random matrix theory). The above analysis then finds
that P(r, R̄,Ω)� R1/2Ω1/2, and so

(3) P(r̄, R̄, Ω̄,∆) = P(r, R̄,Ω,∆) ·P(r̄, Ω̄,∆)� (RΩ)1/2 ·P(r̄, Ω̄,∆)

This is perhaps not optimal, but does look reasonably viable as a heuristic.
Furthermore, we should also indicate the places where P(r̄, R̄, Ω̄,∆) ≈ P(r̄,∆).

From (3) we see R ≈ 1/Ω maximises as a function of R. On the other hand,
(by dyadicity) there must be some Ω with P(r̄,∆) ≈ P(r̄,Ω,∆) ·P(Ω̄,∆). As (2)
bounds the latter factor rather significantly when 1/Ω 6≈ ∆1/12, we would need
for P(r̄,Ω,∆) to be quite larger than P(r̄,∆) for such a Ω to dominate, which
seems unlikely (indeed, with P(2̄,Ω) ≈

√
Ω the effect is the opposite). So we expect

(4) P(r̄, R̄, Ω̄,∆) ≈ P(r̄,∆) when R ≈ 1/Ω ≈∆1/12.

5. Granville’s heuristic

The idea of Granville’s heuristic is that one can guesstimate an upper bound on
the number of (integral) points (up to a specific height) on a “covering” variety
that contains all the points (up to that height) on the elliptic curves in a given
discriminant range. This upper bound is then compared to the lower bound that
comes from counting lattice points in ellipsöıds (§2), though it is only in succeeding
sections that we shall consider how to collate the bounds.

4One can ask whether these curves actually do typically have rank 1; we cannot prove this is

the case, but it seems likely that (at the very least) a positive proportion should be rank 1.
5In the twist case, the 3/2 exponent for the L′E(1)-distribution fits the data of [33, §3.2].
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Let us consider the “family” of all elliptic curves over Q, which we shall order
in the “big box” enumeration (though see Footnote 6). We can write a elliptic
curve projectively as y2z = x3 + axz2 + bz3 and put z = z̃3 and x = x̃z̃, so that
y2z̃3 = x̃3z̃3 + ax̃z̃7 + bz̃9 or

V : Y 2 = X3 + aXZ4 + bZ6.

We wish to count (or at least bound) the number G∆(T ) of integral (a, b,X, Y, Z)
points on V with these variables in dyadic ranges. We want the curve to have
discriminant of size ∆, and will approximate6 this situation by max(a3, b2) ∼ ∆.
We furthermore want the point to have height of size T , so that max(X,Z2) ∼ T .

5.1. A probabilistic model. One crude idea is to model the right hand of the
equation for V by it being an integer of size7 S = max(X3, aXZ4, bZ6), and thus
has a probability 1/

√
S of being square. We have ∆5/6 choices for (a, b), while the

number of (X,Z) choices depends on the ranges in the maximum defining S. For
instance, when X3 dominates the S-maximum, we have X ≈ T and the number
of possible Z is min(

√
T/a1/4,

√
T/b1/6) =

√
T/max(a1/4, b1/6) ∼

√
T/∆1/12, and

so the probability estimate suggests that number of such integral points on the
variety V is approximately

∆5/6 · T ·
√
T/∆1/12

√
T 3

= ∆3/4.

We consider the other cases (a bit tediously) of S-dominance in the next two sub-
subsections, where again ∆3/4 will be the principal contribution.

5.1.1. When bZ6 dominates. The second case has bZ6 dominating the S-maximum,
so we have that X � min(T,Z2b/a, Z2b1/3). First consider the Z2 ≈ T subcase,
when the probability of Y being square is 1/

√
bT 3/2. The number of Z-choices is

thus
√
T while the number of X-choices is bounded as above, and so for a given (a, b)

pair its probability of appearing in a V -point (with the relevant height restrictions)
is min(1, b/a)/

√
b, We then sum over the (a, b)-ranges, recalling max(a3, b2) ≈ ∆.

When b2 ≈ ∆ the probability is just 1/
√
b ≈ ∆1/4, yielding � ∆5/6−1/4 = ∆7/12

points on V . Indeed, the same analysis holds when |b| ≥ |a| ≈ ∆1/3, for which we
find � ∆5/6/

√
∆1/3 = ∆2/3 points on V . Finally, when |a| ≈ ∆1/3 and b ≤ |a|,

there are at most a2 ≈∆2/3 pairs to count, yielding the same bound on V -points.
The second subcase here is when X ≈ T , where the probability that Y is a square

is 1/
√
bZ3. The prediction of the total number of V -points will thus be T/

√
bZ3

summed (or effectively integrated) over the relevant (a, b, Z) regions. We see that
Z2 � max(Ta/b, T/b1/3) for bZ6 to be dominant. By exercising the sum over Z
we are left with min(b/a, b1/3)/

√
b = min(

√
b/a, 1/b1/6). When |a| ≈ ∆1/3 the

minimum is less than
√

∆1/2/∆1/3, saving ∆1/12 for a bound of ∆3/4 on the count
of V -points. When |b| ≈∆1/2 similarly 1/b1/6 saves ∆1/12 with the same result.

6It should be reasonable to (in the heuristic sense of areal integrals approximating lattice point

sums) consider 4a3 + 27b2 ≈ ∆ instead, but the argument does not add anything to the heuristic
and would tend to obscure the point.

7This could be “refined” by separately considering regions where there is some cancellation
between these three quantities, but my calculations show that this does not matter in the end,
and again would obscure the issue. E.g., the number of (a, b,X, Z) with |aXZ4 − bZ6| ≈ T 3−δ is

of size T 3/2−δ (up to ∆ adjustments), which then saves 1/T δ/2 in the subsequent analysis.
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5.1.2. When aXZ4 dominates. Finally we consider the case when aXZ4 dominates
the S-maximum. The power-mean inequality implies (X3)1/3(bZ6)2/3 � aXZ4, so
that b2/3 � a and we must have a ≈ ∆1/3. Again it is profitable to first consider
the case when X ≈ T . Then the probability of Y being a square is 1/

√
aTZ4,

and summing over Z with use of T 2 � aZ4, we find that relevant expression to
be summed over (a, b) is 1/a1/4. This saves 1/∆1/12 and gives an upper bound
of ∆3/4 in the V -count. Similarly, in the case where Z2 ≈ T the probability of Y
being square is 1/

√
aXT 2, and summing over X � T finds 1/

√
a to be summed

over the (a, b) region. As before this saves 1/∆1/6, yielding an acceptable ∆2/3

bound for the count of V -points.

5.2. Conclusion. We conclude8 that there should be about ∆3/4 points on V that
satisfy both max |a3, b2| ≈ ∆ and max |X,Z2| ≈ T . Upon having this estimate
G∆(T ) ≈ ∆3/4 (which is, perhaps curiously, independent of T ), we then sum it
dyadically over T up to a bound eH , which givesH∆3/4. So we can write Granville’s
heuristic as

(5) #{points up to näıve height H on all curves with ∆E ≈∆} � H∆3/4,

and the task becomes to determine/predict in what H-range this might be valid.
Furthermore, we might note that Granville’s heuristic could additionally predict
that the two sides are approximately equal (in the sense used in other places of this
paper) in such a range.

6. Combining estimates

We now wish to compare the estimate (1) from lattice point counting to the
estimate (5) of Granville. From this we might obtain (for each r)

(6) ∆5/6
∑
(R)

P(r̄, R̄,∆) · H
r/2

√
R
� H∆3/4,

where the left side is a sum over the dyadic R-intervals. We can string out the
summation further, introducing a dyadic Ω-sum to get∑

(R)

∑
(Ω)

P(r̄, R̄, Ω̄,∆)√
R

� H1−r/2∆−1/12,

where by (4) the R ≈ 1/Ω ≈∆1/12 term contributes P(r̄,∆)
√

Ω ≈ P(r̄,∆)/∆1/24

to the double-sum on the left. On the other hand, by (3) this double-sum on the
left is bounded above (up to logs from the R-dyadicity) by∑

(R)

∑
(Ω)

P(r̄, Ω̄,∆) ·Ω1/2 � 1
∆1/24

∑
(Ω)

P(r̄, Ω̄,∆) =
P(r̄,∆)
∆1/24

,

confirming our claim of the dominance of the R ≈ 1/Ω ≈∆1/12 term.
Putting this back into (6), we find that

P(r̄,∆)� H1−r/2∆3/4−5/6+1/24 = H1−r/2∆−1/24,

8One can try to bolster such analysis by the use of congruential information as in [34, §9],
therein relying on a sort of equidistribution in exponential ranges first considered by Hooley [20]

regarding the Pell(ian) equation, but such additions do not change the result. In the quadratic
twist case of [34, §9], the analysis of congruences did change the result in the case where the curve
has 2-torsion, but here we know [9, 17] that such curves are sparse.
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and as can be seen, when r = 2 the H-dependence drops out and we recover9 the
(crude) bound of N(2,∆) � ∆19/24. For r > 2 we obtain a better bound by
taking H as large as possible.10 For instance, if we could take H = ∆1/12 we would
then have P(r̄,∆) � ∆(1−r)/24 which says N(r,∆) � ∆(21−r)/24 and leads12

to r ≤ 21. However, we can also consider this comparison when r = 1. Indeed the
analysis of this will aid our guess for what size we can take H to be.13

6.1. Calibration. The idea (which admittedly has an ad hoc nature to it) is that
we can take H up to the point where the rank 1 curves no longer give a substantial
proportion of the points that are allowed on the right side of (5), and no further.

Firstly, we can note that as H →∞, the number of points (on V ) from curves of
rank 1 and discriminant of size ∆ should be approximately14

√
H∆5/6−1/24, which

is eventually smaller than Granville’s H∆3/4. So there must be some “transition”
point when the rank 1 curves start producing less points than Granville allows.

Now for small H, there is not really a discrepancy (in rank 1) when comparing
the ellipsöıd count

√
H∆19/24 to the Granville bound H∆3/4 — namely, we can

only apply the ellipsöıd counting when H � RegE , and so the proposed estimate
needs reworking. Indeed, from the examples15 of small points in §4.1, we might be
led to think that there are H∆3/4 curves of rank 1 with discriminant of size ∆ and
regulator of size eH , at least until H becomes large enough for this to exhaust the
totality of the ∆5/6 rank 1 curves with discriminant of size ∆. And indeed, this
cross-over point is precisely when H ≈∆1/12.

7. Error terms and the Elkies rank 28 curve

We now give some indication of the error terms for the quantities we estimated
above, and how these might allow larger ranks than 21 to occur for “small” dis-
criminants (or conductors). There are two types of such error terms, those that
depend on the rank r, and those that do not. A prototypical version of the latter is
the product of local Tamagawa numbers, which can be (crudely) bounded similar
to a divisor function, and thus (see [36, §4]) is of size no more than N c/ log logN .

9The reader may inquire whether we have fulfilled the prospectus of [32, §4.5], namely to

produce a “different” method to produce X19/24. Indeed, some of the above uses estimates on

L-values (and so might be thought of as like the argument in [32, §3]), but that really obfuscates

the picture. We are, in fact, mostly only using the condition that Ω ≈ 1/∆1/12 dominates the
analysis, which does not depend upon L-values (they only serve to give more confidence that this

condition might be correct). Thus the argument here, that ∆19/24 comes from the co-incidence of

Hr/2/
√

Reg with a point-count bound H∆3/4, should be seen as different from both the L-value
analysis of [32, §3], and the X-is-a-random-square analysis that is briefly mentioned in [32, §4.5].

10Indeed, one can immediately note that we get that N(3,∆) is significantly less than ∆19/24

unless one can only take H to be an insignificant function of ∆. Combined with the suspicion11

that N(2,∆) ≈ ∆19/24, one would then have the number of rank 3 curves is significantly less

than the number of rank 2 curves, which for some reason is occasionally disputed.
11The method given here does not really support such a (crude) asymptotic, only an upper

bound, but the other two methods of two footnotes previous both lend credence to this prediction.
12Generally, if curves with R ≈∆κ dominate (for rank r) the left side of (6), taking H ≈∆η

in the calibration gives (r/2−1)η ≤ 3/4+κ/2 (where BSD with ABC+PL implies κ ≤ 1/2+1/4).
13This is (partially) distinct to the GPPVW heuristic [15], where r = 2 is used for calibration.
14Here the 1/24 comes from the typical size of the square root of the reciprocal of the real

period, and indeed this real-period reciprocal is itself the typical size of the regulator.
15The comments here might propose P(1, R̄,Ω,∆) ≈ P(1,∆) · (RΩ) ≈ RΩ in place of (3).
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Examples of the first type include L-values, (effects of) differences between näıve
and canonical heights, and our suppression of the volume γr of the r-dimensional
unit ball. A result of Brumer gives us r . logN

2 log logN under GRH, but in reality, if
we can take H to be any positive power of ∆ in the calibration (§6.1), then the
rank will be bounded and the asymptotic analysis will be superfluous.

The (asymptotically) most significant correction is πr/2/Γ(1 + r/2) from the
volume of the r-dimensional unit ball, which will tend to 1/N1/4 as r → logN

2 log logN

as N →∞. At first glance one might think would this would modify the Granville-
versus-ellipsöıd comparison to be Hr/2/

√
RE � H∆3/4+1/4, but as just noted, one

would still obtain a prediction of an upper bound of (say) r ≤ 27 with H ≈∆1/12,
and then with this bound in hand the effect of the γr is negligible asymptotically
(that is, just a constant) as ∆→∞. Similarly, for the leading Taylor series term,
since LE(s) acts like Ns at infinity, we expect that the rth derivative is bounded
by (logN)r, and then the Brumer bound implies that the effect16 of L(r)

E (1)/r!
as N →∞ is no more than Nf(N) with f(N) ≈ log log logN

2 log logN . Finally, the adjustment
for the difference between canonical and näıve heights is also not more than cr for
some constant c (and is negligible for points for points whose height is not� log ∆).

In short, while we might expect the typical regulator is RegE ≈ 1/ΩE ≈ ∆1/12
E

asymptotically, the right side can have another term of size (logNE)r/r!; mean-
while, the count of lattice points should have an extra factor of γr included.

7.1. The Elkies curve. This curve [12] of rank ≥ 28 is defined by the a-invariants
[1,−1, 1,−20067762415575526585033208209338542750930230312178956502,
34481611795030556467032985690390720374855944359319180361266008296291939448732243429].

This is semistable at all bad primes except 3, where it has local conductor 32.
The discriminant/conductor ratio is 1036512942688442419200000, or approximately
15% of the size of the conductor, while the Tamagawa product is 172800. The
reciprocal of the real period is fairly well approximated by ∆1/12

E , off by a factor of
about 4.41. The canonical heights of the points listed by Elkies are all about 48,
while their näıve heights are typically closer to 63. This might involve a discrepancy
of ≈ (4/3)28 ≈ 3000 in estimates with points of (logarithmically) small height.
Perhaps most crucially, the regulator is ≈ 3.8573 · 1034, about 27 · 1020 times the
reciprocal of the real period, so greatly throwing off the previous expectations.

More specifically, we find that L(r)
E (1)/r! ≈ 7 · 1040 for this curve, notably large

compared to ∆1/12
E ≈ 6.25 ·1013, which implies that we are not yet near the asymp-

totic regime. Indeed, even the most optimistic analysis with error terms should lead
one to predict that curves of rank ≥ 22 are still permitted until a range much be-
yond what has currently been considered, for instance until 1

log logNE
≥ 1/12, with

most likely this right side needing to be reduced by another nonnegligible factor.
On the other hand, for the comparison17 of Hr/2/

√
RE versus H∆3/4

E , upon tak-
ing the suggested H = ∆1/12

E ≈ 6.25 ·1013 we find that Hr/2/
√
RE ≈ 7 ·10175 which

is much larger than H∆3/4
E ≈ 9 · 10137, and this perhaps casts some doubt on the

Granville estimate already. However, taking instead H = ∆1/12
E / log ∆E malleates

the estimates into reasonably close agreement (particularly with γ28 included).18

16The bound with NE can be translated to ∆E by the ABC (or Szpiro’s) conjecture [26, §2].
17The volume γ28 of the unit 28-sphere is ≈ 10−4, so the correction it induces is rather minor.
18Yet in this regard, the same could be argued for H ≈ exp(

√
log ∆E) log ∆E .
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8. Note on Granville’s heursitic in the quadratic twist case

In §13.3 of [34], we cite Rubinstein as presenting a challenge of taking a curve
in Cremona’s database without 2-torsion, and finding a quadratic twist of rank 6.

This has since been answered by Daniels and Goodwillie [6, Table 4] already
for 11a, noting that the −203145767th twist has rank 6, and similarly the twist
of 550k by 4817182.

9. Higher degree or weight

Viewing elliptic curves over Q as avatars for degree 2 L-functions of motivic
weight 1, one can then ask similar questions about (analytic) ranks of other odd19

weight motives. This then is an excuse for me to record (all in one place) about as
much as I know/suspect here.

9.1. Degree 2.

9.1.1. Motivic weight 1. Although it is not directly related to the ideas here, I
would be remiss not to point out that there is a modular form

f = q − iq2 − 2q3 − q4 − 3q5 + 2iq6 + 3iq7 + iq8 + q9 + 3iq10 − 3iq11 + . . .

over Γ1(122) that is defined over Q(
√
−1) and has Lf (1) = 0 even though the

root number (a root of 61x4 − 22x2 + 61) does not force this.20 This was noted in
September 2000 by W. A. Stein, using his Magma modular forms implementation.

It seems this is the first example with quadratic character; earlier examples exist
at levels 61, 63, 80, 85, 91, 101, 104, 105, 111, 112, 114, and 117 (three).

There are also the calcuations of Brumer [4], which give examples of analytic
rank 2 for higher-dimensional quotients of J0(N), that is, those where the Fourier
coefficients of the modular form live in a (totally real) number field of higher degree.

9.1.2. Motivic weight 3. These correspond to modular newforms of weight 4. Here
we might expect analytic rank 2 to be rather common. For instance, if we fix
a modular newform f with rational coefficients and consider its quadratic twists,
the Waldspurger formula [31] (see also [29] and [22]) gives an associated modular
form of weight 5/2 whose dth coefficient is related to the central L-value of the dth
twist of f , at least for d which satisfy an arithmetical relation with the level N
of f (for instance, d should be a square modulo 4N). As we expect that this
weight 5/2 form has dth coefficient of size d3/4, this then gives a prediction that
in any quadratic twist family, there should be approximately D1/4 twists up to D
which have analytic rank 2 (or higher). Indeed, this is reasonably well borne out
by the data of Rubinstein [28].

19Typically even weight motives do not have vanishing central L-value (it is not a special
value in the sense of Deligne [8]), though the construction of Armitage [1] yields motivic weight 0

L-functions with odd parity. Friedlander [14] gives an explicit example, and the “smallest” one
appears to be an Artin representation of conductor 2832, for the field x8 +12x6 +36x4 +36x2 +9,

though perhaps more interesting is the SL2(F3) example of conductor 1632 associated to the field
x8 − x7 + x6 − 4x5 + 5x4 − 8x3 + 4x2 − 8x+ 16.

20In [27, Exercise 5.5] Rohrlich gives a different example, a twist by −118− 18
√
−7 of 49a.
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We can also list small levels for which there is a rational newform of analytic
rank 2. Up to 1000, the list is

127, 159, 365, 369, 453, 465, 477, 567, 581, 639, 657, 681,
684, 781, 832, 848, 855, 864, 885, 892, 918, 945, 957, 969,

and we entrust the reader can determine which form at the given level has the
extra vanishing of its L-function. Many of these appear in [10], either in Table 1
or the final paragraph of §7.4 therein. We computed (using Magma) every space of
modular forms of weight 4 and level up through 2900, and found no examples21 of
analytic rank 3 for degree 2 motivic weight 3 L-functions (see [19, V.4] and [37] for
the arithmetic context).

Similar to above note concerning non-selfdual data, there are weight 4 modular
form of levels 68, 77, and 99, with vanishing L-value, with this last one having
quadratic character (others with quadratic characters exist at levels 106, 120, 128,
and 200; I did not check higher weights for this).

9.1.3. Motivic weight 5. Here is a list of the levels up to 1000 that have a rational
newform with analytic rank 2:

95, 116, 122, 260, 308, 359, 371, 400, 470, 527, 539, 566, 700, 770, 832, 880, 980.

Again the first few examples appeared in [10], and we entrust the reader can de-
termine which form22 at the relevant level is the one whose L-value has extra
vanishing. Moreover, Table 5 of [32] lists some twist data23 for symmetric powers
of Grössencharacters attached to CM elliptic curves, yielding 16 more examples,
the one of largest conductor being the 89320th twist of ψ5 for ψ attached to 256b.

9.1.4. Motivic weight 7. Up through level 1000, there are four rational newforms
with analytic rank 2, at levels 425, 585, 825, and 957. The first is the 5th quadratic
twist of the level 17 newform, the second is the −3rd twist of the rational level 195
newform, and the third is the 5th quadratic twist of the level 33 newform. Again
Table 5 of [32] has 3 additional examples, the most spectacular being the 27365th
twist of ψ7 for ψ attached to 121b.24 Furthermore, Footnote 25 of [32] recalls25

the computations in the early 80s of N. M. Stephens, which found that ψ7 for ψ
attached to the elliptic curve [0, 0, 0, 127, 0] has analytic rank 2.

21All “analytic ranks” that we report are experimental observations, though in some cases one
can give an arithmetical criterion that shows the L-value is truly zero.

22Perhaps the most notable one is the level 832 example, which is the −8th quadratic twist of

the level 52 newform with a3 = −5. Note that the (motivic) weight 3 example at this level is also
a quadratic twist (of a level 26 newform). The level 400 example is also a twist, of the level 50

newform with (a2, a3) = (4, 11), as is the level 880 example, of the rational newform of level 440.
23The use of the Waldspurger formula yields a weight 7/2 form with dth coefficient of size d5/4,

so it would be somewhat surprising if there were many vanishings in the twist family of a fixed

modular form. Indeed even just one vanishing twist with |d| ≥ 104 is rather unexpected, while 8
such examples (across 10 CM curves tested) are listed in [32, Table 5].

24The Table erroneously calls this “121a”, and with regards to the previous footnote, we now
have a weight 9/2 form from the Waldspurger formula, with dth coefficient of size d7/4.

25Greenberg’s paper [18, p. 243] lists two examples of ψ3 having extra vanishing, but when we
visited him in November 2006, he was able to show us ancient computer printouts from Stephens

that included this ψ7 example, whose conductor is 25 · 1272 = 516128.
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9.1.5. Higher weights. It seems to me that sufficiently higher (motivic) heights,
say 16, are quite unlikely to yield examples of analytic rank 2. However, I really
cannot guess what the crossovers from “infinitely many” to “finitely many” to
“none” are. Probably weight 5 has infinitely many, while I think I would guess
weight 7 does also, while weight 11 might already have none. I’m not sure what I
would guess for weight 9, where there no examples up through level 750.

In analogy with the “generic” guess26 that a weight 2 rational newform of level N
has a 1/N1/24 chance of having analytic rank 2, one might propose that a weight 2k
newform defined over a field of degree d has a 1/Nd(2k−1)/24 chance of having
analytic rank 2. One would still need to know, however, an estimate for the number
of such “generic” (non-twist) forms at a given level, which seems a difficult problem.

9.2. Degree 4. Next we turn to the case of (primitive) degree 4 L-functions. The
examples of (motivic) weight 1 here will be Jacobians of genus 2 curves or elliptic
curves over quadratic fields. Again we expect that these can have quite high ranks.27

9.2.1. Motivic weight 3, symmetric cubes. The first examples to be computed here
seem to be symmetric cube L-functions of elliptic curves [5]. Indeed, Buhler,
Schoen, and Top already found (Table 9.3) that 39a has a symmetric cube with
analytic rank 2, and listed two examples (2379b and 31605ba) of analytic rank 4.
Note that these conductors are distinctly less than their counterparts for elliptic
curves, though one must (typically) cube the conductor with Sym3. The compu-
tations of [24] found 14 more examples (see Table 7 therein) of analytic rank 4 for
elliptic curves with conductor up to 130000 (the limit of Cremona’s tables at the
time), but none of analytic rank 5.

Perhaps more interesting in Table 6 of [24], which notes that there were only
16782 examples of analytic rank 2 for the symmetric cube in this conductor range,
compared to 61787 for the elliptic curves themselves, while for analytic rank 3 it
was about even (908 vs 905), and for analytic rank 4 the symmetric cube produced
16 examples, and the elliptic curves themselves 0.

The data in [32, §6.6] also mention a total of 6 cases of analytic rank 3 when
looking at quadratic twists of the symmetric cube of 11a, 14a, or 15a, and a total
of 229 cases of analytic rank 2 therein.

9.2.2. Motivic weight 3, hypergeometric motives. The symmetric cube examples do
not have full Sato-Tate group (see [13] in this regard), and one might thus call
them “deficient” in a similar sense that (say) imprimitive examples would be. In
conjunction with Fernando Rodriguez Villegas and particularly David Roberts, we
have computed [35, §18.5] central L-values for a number of hypergeometric motives,
in particular all 487 degenerations at t = 1 of degree 6 weight 3 data. These give
degree 4 L-functions of motivic weight 3, and we find 4 examples28 of analytic
rank 3 and 73 of analytic rank 2.

We have not made a similar exploration of degree 4 weight 3 hypergeometric
data for other values of t, as it can be hard to compute the local information for
wild primes. Another method to get L-functions of this degree and weight might be
(following [13]) to take a tensor product of two degree 2 L-functions, one of motivic

26Note that the twist case lowers the probability, as the real-period reciprocal grows faster.
27The genus 2 record appears to be rank ≥ 26 by Elkies [11].
28There are actually 5 hypergeometric data that yield analytic rank 3 for the t = 1 degenera-

tion, but only 4 distinct motives. Similarly, there are 80 that yield analytic rank 2.
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weight 1 and the other of motivic weight 2. It does not seem that the technology
for Siegel modular forms is sufficiently developed for truly “generic” examples to
be computed to any great extent here.

9.2.3. Motivic weight 5. Again there are hypergeometric motives, namely taking
the t = 1 degenerations of the 142 hypergeometric data of degree 6 and weight 5,
and 35 of these data give a motive of analytic rank 2, for 34 distinct examples.

9.3. Degree 6. Again the (primitive) weight 1 examples should be Jacobians of
genus 3 curves or elliptic curves over cubic fields, and we expect high ranks to occur.
For weight 3, presumably some experiments with hypergeometric motives could be
done, though again the question of wild prime data is difficult. With weight 5, the
paper [24] considers Sym5 for about29 8% of the elliptic curves of conductor up
to 130000, and finds 569 examples of analytic rank 2 and 12 of analytic rank 3, the
first of the latter being 816b, whose Sym5 conductor is 21235175 ≈ 1.41 · 1012.

9.4. Higher degrees. As always, the weight 1 examples will consist of curves,
where we could expect largish ranks to be possible. For higher weight, I don’t
know of any data other than symmetric powers of elliptic curves in [24], though
maybe David Roberts has computed a few sporadic cases (with a single wild prime)
of t = 1 hypergeometric degenerations. Although the data of [24] are for quite
limited objects, they are already interesting in that they give examples up to the
13th symmetric power (of 324c) with analytic rank 2, in contrast to [32, §6.5]
which suggests extra vanishing should be rare already for 9th symmetric powers.
Furthermore, the data from t = 1 degenerations of degree 6 hypergeometric data
(thus degree 4 L-functions) already suggests a conjecture that for higher degrees
there should be lots of examples of analytic rank 2 for all odd weights up through
one more than the degree.30 For instance, (Φ8

2,Φ
4
4) at t = 1 has degree 6, weight 7,

and conductor 212, with analytic rank 2. Another example is (Φ10
2 ,Φ

3
4Φ8) at t = 1

with degree 8, weight 9, and conductor 222 again with analytic rank 2.
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[13] F. Fité, K. S. Kedlaya, A. V. Sutherland, Sato-Tate groups of some weight 3 motives.

[14] J. B. Friedlander, On the class numbers of certain quadratic extensions. Acta Arith. 28
(1975/76), no. 4, 391–393. http://eudml.org/doc/205399

[15] D. Garton, J. Park, B. Poonen, J. Voight, M. Matchett Wood, (currently) unwritten paper.

[16] D. Goldfeld, Modular elliptic curves and Diophantine problems. In Number Theory, edited
by R. Mollin, published by Walter de Gruyter (1990), 157–175.

[17] D. Grant, A Formula for the Number of Elliptic Curves with Exceptional Primes. Comp.

Math. 122 (2000), 151–164. http://dx.doi.org/10.1023/A:1001874400583
[18] R. Greenberg, On the Birch and Swinnerton-Dyer conjecture. Invent. Math. 72 (1983), no. 2,

241–265. http://eudml.org/doc/143019

[19] B. H. Gross, D. B. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84
(1986), no. 2, 225–320. http://eudml.org/doc/143341

[20] C. Hooley, On the Pellian equation and the class number of indefinite binary quadratic forms.
J. reine Angew. Math., 353 (1984), 98–131. http://eudml.org/doc/152668

[21] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory. Springer GTM

84 (1990).
[22] W. Kohnen, D. Zagier, Values of L-series of modular forms at the center of the critical strip.

Invent. Math. 64 (1981), 175–198. http://eudml.org/doc/142819

[23] S. Lang, Elliptic Curves: Diophantine Analysis. Grund. der Math. Wissen. 231 (1978).
[24] P. Martin, M. Watkins, Symmetric powers of elliptic curve L-functions. In Algorithmic Num-

ber Theory, Proceedings of the 7th International Symposium, ANTS-VII, Berlin, Germany,

July 2006, edited by F. Hess, S. Pauli, and M. Pohst, Springer LNCS 4076 (2006), 377–392.
http://dl.acm.org/citation.cfm?id=2123179

[25] B. Mazur, Modular curves and the Eisenstein ideal. Publ. Math. de l’IHÉS, 47 (1977), 33–186.
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[26] J. Oesterlé, Nouvelles approches du “Théorème” de Fermat. (French) [New approaches to

the “Theorem” of Fermat]. Sém. Bourbaki 30, Exp. 694 (1987/88), 165–186.

http://eudml.org/doc/110094

[27] D. E. Rohrlich, Root Numbers. In Arithmetic L-functions, proceedings of the 2009 IAS/PCMI

Graduate Summer School, edited by C. Popescu, K. Rubin, and A. Silverberg, published by

AMS in IAS/Park City Mathematics Series 18, 353–448.
[28] M. O. Rubinstein, Twisting data for level 7 weight 4 modular form. Data available from:

http://oto.math.uwaterloo.ca/~mrubinst/L function public/VALUES/DEGREE 2/WEIGHT 4 example

[29] G. Shimura, On modular forms of half integral weight. Ann. of Math. 97 (1973), 440–481.

http://www.jstor.org/stable/1970831

[30] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic
curves. Math. Comp. 55 (1990), 723–743.

http://www.ams.org/mcom/1990-55-192/S0025-5718-1990-1035944-5

[31] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier.
(French) [On the Fourier coefficient of half-integral weight modular forms]. J. Math. Pures

Appl. 60 (1981), 375–484.
[32] M. Watkins, Some heuristics about elliptic curves. Exper. Math. 17 (2008), no. 1, 105–125.

http://projecteuclid.org/euclid.em/1227031901

http://dl.acm.org/citation.cfm?id=1394067
http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0605&L=NMBRTHRY&P=50
http://eudml.org/doc/205399
http://dx.doi.org/10.1023/A:1001874400583
http://eudml.org/doc/143019
http://eudml.org/doc/143341
http://eudml.org/doc/152668
http://eudml.org/doc/142819
http://dl.acm.org/citation.cfm?id=2123179
http://eudml.org/doc/103950
http://eudml.org/doc/110094
http://oto.math.uwaterloo.ca/~mrubinst/L_function_public/VALUES/DEGREE_2/WEIGHT_4_example
http://www.jstor.org/stable/1970831
http://www.ams.org/mcom/1990-55-192/S0025-5718-1990-1035944-5
http://projecteuclid.org/euclid.em/1227031901


DISCURSUS ON RANKS OF ELLIPTIC CURVES 13

[33] M. Watkins, On elliptic curves and random matrix theory. J. Théor. Nombres Bordeaux, 20
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[35] M. Watkins, What I know about hypergeometric motives. To be merged into a HGM book

with F. Rodriguez Villegas and D. P. Roberts.
[36] B. M. M. de Weger, A + B = C and big X’s. Quart. J. Math. Oxford 49 (1998), 105–128.

http://dx.doi.org/10.1093/qmathj/49.1.105

[37] S. Zhang, Heights of Heegner cycles and derivatives of L-series. Invent. Math. 130 (1997),
99–152. http://dx.doi.org/10.1007/s002220050179

http://dx.doi.org/10.5802/jtnb.653
http://dx.doi.org/10.1093/qmathj/49.1.105
http://dx.doi.org/10.1007/s002220050179

	1. Introduction
	1.1. Notation

	2. Points in ellipsoïds
	3. Recollections of real periods
	4. Heuristics with regulators
	4.1. 

	5. Granville's heuristic
	5.1. A probabilistic model
	5.2. Conclusion

	6. Combining estimates
	6.1. Calibration

	7. Error terms and the Elkies rank 28 curve
	7.1. The Elkies curve

	8. Note on Granville's heursitic in the quadratic twist case
	9. Higher degree or weight
	9.1. Degree 2
	9.2. Degree 4
	9.3. Degree 6
	9.4. Higher degrees

	References

