Affine Kac-Moody Lie Algebras in MAGMA

Dan Roozemond
Computational Algebra Group
University of Sydney
Computation in Coxeter groups and Kac-Moody algebras
Sydney, 16 November 2011

Kac-Moody Lie Algebras

Serre relations

For A a generalized Cartan matrix, define $\mathfrak{g}^{\prime}(A)$ to be the Lie algebra generated by $3 n$ generators e_{i}, f_{i}, h_{i} and relations:

$$
\left\{\begin{array}{l}
{\left[h_{i}, h_{j}\right]=0, \quad\left[e_{i}, f_{i}\right]=h_{i}, \quad\left[e_{i}, f_{j}\right]=0 \quad(i \neq j)} \\
{\left[h_{i}, e_{j}\right]=a_{i j} e_{j}, \quad\left[h_{i}, f_{j}\right]=-a_{i j} f_{j},} \\
\left(\operatorname{ad} e_{i}\right)^{1-a_{i j}} e_{j}=0, \quad\left(\operatorname{ad} f_{i}\right)^{1-a_{i j}} f_{j}=0 . \quad(i \neq j)
\end{array}\right.
$$

Kac-Moody Lie Algebras

Three classes

(a) Finite-dimensional (if there is a positive integral vector v such that $A v>0$);
(b) Affine (if there is a positive integral vector v such that $A v=0$);
(c) Complicated (if there is a positive integral vector v such that $A v<0$).

Kac-Moody Lie Algebras

Three classes

(a) Finite-dimensional (if there is a positive integral vector v such that $A v>0$);
) Affine (if there is a positive integral vector v such that $A v=0$);
(c) Complicated (if there is a positive integral vector v such that $A v<0$).

Non-twisted Affine Lie Algebras

For a generalized Cartan matrix A of type $X_{l}^{(1)}$, take \mathfrak{g}_{0} to be the finite-dimensional Lie algebra of type X_{l} and take

$$
\mathfrak{g}=\mathfrak{g}_{0} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} c \oplus \mathbb{C} d
$$

with multiplication on \mathfrak{g} given by

$$
\begin{aligned}
& {\left[t^{k} \otimes x \oplus \lambda c \oplus \mu d, t^{k_{1}} \otimes y \oplus \lambda_{1} c \oplus \mu_{1} d\right]=} \\
& \quad\left(t^{k+k_{1}} \otimes[x, y]+\mu k_{1} t^{k_{1}} \otimes y-\mu_{1} k t^{k} \otimes x\right) \oplus k \delta_{k,-k_{1}}(x \mid y) c
\end{aligned}
$$

Theorem [Kac90, Theorem 7.4]

\mathfrak{g} is the affine Kac-Moody algebra associated to A.

$$
\mathfrak{g}=\mathfrak{g}_{0} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} c \oplus \mathbb{C} d
$$

- Arithmetic is very straightforward; except equality testing
- 2 normal forms:

$$
\begin{aligned}
& t^{-1} \otimes\left(2 E_{1}+3 F_{2}\right)+ \\
& -1 \otimes\left(2 E_{1}+3 F_{2}\right)+ \\
& t^{2} \otimes\left(2 E_{1}+3 F_{2}\right)+ \\
& +\frac{1}{3} c
\end{aligned}
$$

$$
\begin{aligned}
& \left(2 t^{-1}-2+2 t^{2}\right) \otimes E_{1}+ \\
& \left(3 t^{-1}-3+3 t^{2}\right) \otimes F_{2}+ \\
& \frac{1}{3} c
\end{aligned}
$$

Demo

Conclusion

- We can currently do a rather small number of things,
- but l'd be interested in what you would want it to do!

