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‣ What next?

‣ Questions?
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‣ Multiplication                                        that is

• Bilinear,

• Anti-symmetric,

• Satisfies Jacobi identity:

What is a Lie Algebra?

‣ Vector space: 

3

Fn

[·, ·] : L× L "→ L

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0
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Fn

[·, ·] : L× L "→ L

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0
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Simple Lie algebras

4

Classification (Killing, Cartan)

If                         and     algebraically 
closed, then the only simple Lie 
algebras are:

char(F) = 0

An (n ≥ 1)

Bn (n ≥ 2)

Cn (n ≥ 3)

Dn (n ≥ 4)

E6,E7,E8

F4

G2

F
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• Easier to calculate in L

• G ≤ Aut(L), often even G = Aut(L)
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Why Study Lie Algebras?

‣ Study groups by their Lie algebras:

• Simple algebraic group G <-> Unique Lie algebra L

• Many properties carry over to L

• Easier to calculate in L

• G ≤ Aut(L), often even G = Aut(L)

‣ Opportunities for:

• Recognition

• Conjugation

• ...

‣ Because there are problems to be solved!

• ... and a thesis to be written...

5
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Chevalley Bases

6

x Α

x Β x Α#Β

x $Α

x $Βx$Α$Β

H

Many Lie algebras have a Chevalley basis!
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‣ A hexagon
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Root Systems

7

‣ A hexagon

Α

Β

Α

Β Α#Β

$Α

$Β$Α$Β

‣ A root system of type A2
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Definition (Root Datum)

R = (X,Φ, Y,Φ∨), 〈·, ·〉 : X × Y → Z
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8

Definition (Root Datum)

R = (X,Φ, Y,Φ∨),

‣ X, Y: dual free     -modules,

‣ put in duality by          ,

‣                : roots,

‣                   : coroots.

Z
〈·, ·〉

Φ ⊆ X
Φ∨ ⊆ Y

〈·, ·〉 : X × Y → Z
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8

Definition (Root Datum)

R = (X,Φ, Y,Φ∨),

‣ X, Y: dual free     -modules,

‣ put in duality by          ,

‣                : roots,

‣                   : coroots.

Z
〈·, ·〉

Φ ⊆ X
Φ∨ ⊆ Y

One Root System

Several Root Data:

“adjoint”

“simply connected”
{ ...

〈·, ·〉 : X × Y → Z
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Root Data

9

One Root System

Several Root Data:

“adjoint”

“simply connected”
{ ...

Irreducible Root Data: A ·
n,B ·

n,C ·
n,D ·

n,E ·
6,E

·
7,E

·
8,F

·
4,G

·
2.

Definition (Root Datum)

R = (X,Φ, Y,Φ∨), 〈·, ·〉 : X × Y → Z
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‣ A hexagon

Α

Β Α#Β

$Α

$Β$Α$Β

‣ A root system of type A2

‣ A Lie algebra of type A2
x Α

x Β x Α#Β

x $Α

x $Βx$Α$Β

H
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Bilinear anti-symmetric multiplication satisfies (                                                 ) :

Chevalley Basis
11

Definition (Chevalley Basis)

Formal basis:

i, j ∈ {1, . . . , n};α,β ∈ Φ

[hi, hj ] = 0,

[xα, hi] = 〈α, fi〉xα,

[x−α, xα] =
∑n

i=1〈ei, α∨〉hi,

[xα, xβ ] =

{
Nα,βxα+β if α + β ∈ Φ,

0 otherwise,
and the Jacobi identity.

L =
⊕

i=1,...,n

Fhi ⊕
⊕

α∈Φ

Fxα
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H
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⊕
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Fhi ⊕
⊕
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Why?

‣ Because transformation between two Chevalley bases is an 
automorphism of L,

‣ So we can test isomorphism between two Lie algebras (and 
find isomorphisms!) by computing Chevalley bases.

12

Why Chevalley bases?

Friday, May 29, 2009
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H

Friday, May 29, 2009



/ department of mathematics and computer science

of 29
Why?

13

L
Fn [·, ·] x Α

x Β x Α#Β

x $Α

x $Βx$Α$Β

H

L Fn
[·,

·]

Friday, May 29, 2009



/ department of mathematics and computer science

of 29
Why?

13

L
Fn [·, ·] x Α

x Β x Α#Β

x $Α

x $Βx$Α$Β

H

L Fn
[·,

·]

x Α

x Β x Α#Β

x $Α

x $Βx$Α$Β

H

Friday, May 29, 2009



/ department of mathematics and computer science

of 29
Why?

13

L
Fn [·, ·] x Α

x Β x Α#Β

x $Α

x $Βx$Α$Β

H

L Fn
[·,

·]

x Α

x Β x Α#Β

x $Α

x $Βx$Α$Β

H
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The Mission

‣ Given a Lie algebra (on a computer),

‣ Want to know which Lie algebra it is,

‣ So want to compute a Chevalley basis for it (if possible).

16

L
Fn [·, ·] x Α

x Β x Α#Β

x $Α

x $Βx$Α$Β

H

Root datum, 
field

Group of 
Lie type

Matrix Lie
algebra

....

“Chevalley Basis 
Algorithm”
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The Mission

‣ Assume splitting Cartan subalgebra H is given 
(Cohen/Murray, indep. Ryba);

‣ Assume root datum R is given

17

L
Fn [·, ·] x Α

x Β x Α#Β

x $Α

x $Βx$Α$Β

H

Root datum, 
field

Group of 
Lie type

Matrix Lie
algebra

....

“Chevalley Basis 
Algorithm”
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‣ Char. 0, p ≥ 5: De Graaf, Murray; implemented in GAP, MAGMA

18
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The Mission

‣ Char. 0, p ≥ 5: De Graaf, Murray; implemented in GAP, MAGMA

‣ Char. 2,3: R., 2009, Implemented in MAGMA

18

L
Fn [·, ·] x Α

x Β x Α#Β

x $Α
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H

Root datum, 
field

Group of 
Lie type

Matrix Lie
algebra

....

“Chevalley Basis 
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‣ Diagonalise L using action of H on L (gives set of       ),

‣ Use Cartan integers             to “identify” the       , 

‣ Solve easy linear equations.

The Problems
19

Normally:

x Α

x Β x Α#Β

x $Α

x $Βx$Α$Β

H

[hi, hj ] = 0,

[xα, hi] = 〈α, fi〉xα,

[x−α, xα] =
∑n

i=1〈ei, α∨〉hi,

[xα, xβ ] =

{
Nα,βxα+β if α + β ∈ Φ,

0 otherwise,
and the Jacobi identity.

xα

xα〈α,β〉

Friday, May 29, 2009
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Diagonalising (A1, char. 2)

20

x !Α x ΑH

[hi, hj ] = 0,

[xα, hi] = 〈α, fi〉xα,

[x−α, xα] =
∑n

i=1〈ei, α∨〉hi,
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{
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0 otherwise,
and the Jacobi identity.
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x !Α x ΑH

Φ = {α = 1,−α = −1} ,

Φ∨ = {α∨ = 2,−α∨ = −2} ,

AAd
1 : X = Y = Z
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Diagonalising (A1, char. 2)

xα x−α h
xα 0 −2h xα

x−α 2h 0 −x−α

h −xα x−α 0
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Diagonalising (A1, char. 2)

xα x−α h
xα 0 −2h xα

x−α 2h 0 −x−α

h −xα x−α 0

Basis transformation....
x = xα − x−α

y = 2xα + x−α

Friday, May 29, 2009
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Diagonalising (A1, char. 2)

xα x−α h
xα 0 −2h xα

x−α 2h 0 −x−α

h −xα x−α 0

Basis transformation....
x = xα − x−α

y = 2xα + x−α

x y h
x 0 −6h − 1

3x + 2
3y

y 6h 0 4
3x + 1

3y
h 1

3x− 2
3y − 4

3x− 1
3y 0

Friday, May 29, 2009



/ department of mathematics and computer science

of 2921
Diagonalising (A1, char. 2)

xα x−α h
xα 0 −2h xα

x−α 2h 0 −x−α

h −xα x−α 0

Basis transformation....
x = xα − x−α

y = 2xα + x−α

x y h
x 0 −6h − 1

3x + 2
3y

y 6h 0 4
3x + 1

3y
h 1

3x− 2
3y − 4

3x− 1
3y 0

‣ Diagonalize L wrt H

‣ Find 1-dim eigenspaces: 

‣ Take

‣ Done!

Algorithm:

x + y ∈ S1

x− 1
2y ∈ S−1

h ∈ S0

S1, S−1, S0

Friday, May 29, 2009
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‣ Diagonalize L wrt H

‣ Find 1-dim eigenspaces: 

‣ Take

‣ Done!

Algorithm:

x + y ∈ S1

x− 1
2y ∈ S−1

h ∈ S0

S1, S−1, S0

‣ Diagonalize L wrt H

‣ Find 1-dim eigenspace: 

‣ Find 2-dim eigenspace:

‣ ...

But in char. 2...

S1

S0
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Diagonalising (A1, char. 2)

‣ Diagonalize L wrt H

‣ Find 1-dim eigenspaces: 

‣ Take

‣ Done!

Algorithm:

x + y ∈ S1

x− 1
2y ∈ S−1

h ∈ S0

S1, S−1, S0

‣ Diagonalize L wrt H

‣ Find 1-dim eigenspace: 

‣ Find 2-dim eigenspace:

‣ ...

But in char. 2...

S1

S0

‣ Not really an issue here 
(almost anything will do), 
but non-trivial in many 
other cases.
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Diagonalising (G2, char. 3)

23

x Α

x Β xΑ#Β x2Α#Β
x3Α#Β

x3Α#2Β

x $Α

x $Βx$Α$Βx$2Α$Βx$3Α$Β

x$3Α$2Β

H
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‣ Find 1 2-dim eigenspace,

‣ Find 6 1-dim eigenspaces, 

‣ Find 2 3-dim eigenspaces.

In char. 3...

Diagonalising (G2, char. 3)
23

x Α

x Β xΑ#Β x2Α#Β
x3Α#Β

x3Α#2Β

x $Α

x $Βx$Α$Βx$2Α$Βx$3Α$Β

x$3Α$2Β

H
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‣ Find 2 3-dim eigenspaces.

In char. 3...

Diagonalising (G2, char. 3)
23

x Α

x Β xΑ#Β x2Α#Β
x3Α#Β

x3Α#2Β

x $Α

x $Βx$Α$Βx$2Α$Βx$3Α$Β

x$3Α$2Β

H

Friday, May 29, 2009



/ department of mathematics and computer science

of 29

‣ Find 1 2-dim eigenspace,

‣ Find 6 1-dim eigenspaces, 

‣ Find 2 3-dim eigenspaces.
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‣ Find 1 2-dim eigenspace,

‣ Find 6 1-dim eigenspaces, 

‣ Find 2 3-dim eigenspaces.

In char. 3...

Diagonalising (G2, char. 3)
23

x Α

x Β xΑ#Β x2Α#Β
x3Α#Β

x3Α#2Β

x $Α

x $Βx$Α$Βx$2Α$Βx$3Α$Β

x$3Α$2Β

H
‣  

‣  

‣  

Observe:

[Fxβ , Fx±(α)] = Fxα+β

[Fxβ , Fx±(α+β)] = Fx−α

[Fxβ , Fx±(2α+β)] = 0
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‣  

Observe:

[Fxβ , Fx±(α)] = Fxα+β

[Fxβ , Fx±(α+β)] = Fx−α

[Fxβ , Fx±(2α+β)] = 0

‣ For

compute

So find root spaces in 3-dim S:

CS(Fxγ , Fx−γ)
γ ∈ {α,α + β, 2α + β}

Friday, May 29, 2009



/ department of mathematics and computer science

of 29
Diagonalising (overview)

24
COMPUTING CHEVALLEY BASES IN SMALL CHARACTERISTICS 7

R(p) Mults Soln

A2
sc(3) 32 [Der]

G2(3) 16, 32 [C]
Asc,(2)

3 (2) 43 [Der]
B2

ad(2) 22, 4 [C]
Bn

ad(2) (n ≥ 3) 2n, 4(n
2) [C]

B2
sc(2) 4, 4 [B2

sc]
B3

sc(2) 63 [Der]
B4

sc(2) 24, 83 [Der]
Bn

sc(2) (n ≥ 5) 2n, 4(n
2) [C]

R(p) Mults Soln

Cn
ad(2) (n ≥ 3) 2n, 2n(n−1) [C]

Cn
sc(2) (n ≥ 3) 2n, 4(n

2) [B2
sc]

D(1),(n−1),(n)
4 (2) 46 [Der]

D4
sc(2) 83 [Der]

D(1)
n (2) (n ≥ 5) 4(n

2) [Der]
Dn

sc(2) (n ≥ 5) 4(n
2) [Der]

F4(2) 212, 83 [C]
G2(2) 43 [Der]
all remaining(2) 2|Φ+| [A2]

Table 1. Multidimensional root spaces

trivial, meaning that X = {Fx | x ∈ E \ H} is the required result. The remaining
cases are identified by Proposition 3, and the algorithms for these cases are indicated
by [A2], [C], [Der], [B2

sc] in Table 1 and explained in Section 3.
In IdentifyRoots we compute Cartan integers and use these to make the

identification ι between the root system Φ of R and the Chevalley frame X computed
previously. This identification is again made on a case-by-case basis depending on
the root datum R. See Section 4 for details.

The algorithm ends with ScaleToBasis where the vectors Xα (α ∈ Φ) be-
longing to members of the Chevalley frame X are picked in such a way that
X0 = (Xα)α∈Φ is part of a Chevalley basis with respect to H and R, and a suitable
basis H0 = {h1, . . . , hn} of H is computed, so that they satisfy the Chevalley ba-
sis multiplication rules. This step involves the solving of several systems of linear
equations, similar to the procedure explained in [6], which takes time O∼(n8 log(q)).

Finally, in Section 5, we finish the proof of Theorem 1 and discuss some further
problems for which our algorithm may be of use.

2. Multidimensional root spaces

In this section we prove Proposition 3, but first we explain the notation in Table
1. As already mentioned, the first column contains the root datum R specified
by means of the Dynkin type with a superscript for the isogeny type, as well as
(between parentheses) the characteristic p. A root datum of type A3 can have
any of three isogeny types: adjoint, simply connected, or an intermediate one,
corresponding to the subgroup of order 1, 4, and 2 of its fundamental group Z/4Z,
respectively. We denote the intermediate type by A(2)

3 . For computations we fix
root and coroot matrices for each isomorphism class of root data, as indicated at
the end of Section 1.2. For A3, for example, the Cartan matrix is

C =




2 −1 0
−1 2 −1
0 −1 2



 .
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L
Fn [·, ·]

Der(L)

Fn [·, ·]

‣ Observe:

•                is a Lie algebra

• (almost)

Der(L)
L ⊆ Der(L)

‣  Der(L) = {d ∈ End(L) | d([x, y]) = [d(x), y] + [x, d(y)]}
adz([x, y]) = [z, [x, y]]

= −[x, [y, z]]− [y, [z, x]]
= [x, [z, y]] + [[z, x], y]
= [x, adz(y)] + [adz(x), y]
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‣ Questions?
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‣ Main challenges for computing Chevalley bases in small characteristic:

• Multidimensional eigenspaces,

• Broken root chains;

‣ Found solutions for all cases, and implemented these:

• MAGMA package, about 6000 lines,

• soon to be available.

‣ To do:

• Compute split Cartan subalgebras in small characteristic;

‣ Bigger picture:

• Recognition of groups or Lie algebras,

• Finding conjugators for Lie group elements,

• Finding automorphisms of Lie algebras,

• ...
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