Construction of Chevalley Bases in all Characteristics

Joint work with On the occasion of Arjeh Cohen 's 60th birthday

Dan Roozemond

/ department of mathematics and computer science

Outline

- What is a Lie algebra?
- What is a Chevalley basis?
- How to compute Chevalley bases?
- What next?

2 of 29

• Vector space: \mathbb{F}^n

3 of 29

/ department of mathematics and computer science

TU e Technische Universiteit Eindhoven University of Technology

- Vector space: \mathbb{F}^n
- \blacktriangleright Multiplication $[\cdot,\cdot]:L\times L\mapsto L$ that is
 - Bilinear,
 - Anti-symmetric,

Satisfies Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

What is a Lie Algebra?

3 of 29

Simple Lie algebras

Classification (Killing, Cartan)

If $char(\mathbb{F}) = 0$ and \mathbb{F} algebraically closed, then the only simple Lie algebras are:

$$\begin{array}{ll} \mathrm{A}_n \ (n \geq 1) & \mathrm{E}_6, \mathrm{E}_7, \mathrm{E}_8 \\ \mathrm{B}_n \ (n \geq 2) & \mathrm{F}_4 \\ \mathrm{C}_n \ (n \geq 3) & \mathrm{G}_2 \\ \mathrm{D}_n \ (n \geq 4) \end{array}$$

/ department of mathematics and computer science

e Technische Universiteit Eindhoven University of Technology

T

Why Study Lie Algebras?

/ department of mathematics and computer science

- Study groups by their Lie algebras:
 - Simple algebraic group G <-> Unique Lie algebra L
 - Many properties carry over to L
 - Easier to calculate in L
 - $G \leq Aut(L)$, often even G = Aut(L)

5 of 29

- Study groups by their Lie algebras:
 - Simple algebraic group G <-> Unique Lie algebra L
 - Many properties carry over to L
 - Easier to calculate in L
 - $G \leq Aut(L)$, often even G = Aut(L)
- Opportunities for:
 - Recognition
 - Conjugation
 - • •

5 of 29

- Study groups by their Lie algebras:
 - Simple algebraic group G <-> Unique Lie algebra L
 - Many properties carry over to L
 - Easier to calculate in L
 - $G \leq Aut(L)$, often even G = Aut(L)
- Opportunities for:
 - Recognition
 - Conjugation
 - •••
- Because there are problems to be solved!
 - ... and a thesis to be written...

5 of 29

Chevalley Bases

Many Lie algebras have a Chevalley basis!

A hexagon

/ department of mathematics and computer science

A hexagon

/ department of mathematics and computer science

7 of 29

A hexagon

8 of 29

Definition (Root Datum)

$$R = (X, \Phi, Y, \Phi^{\vee}), \quad \langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z}$$

/ department of mathematics and computer science

8 of 29

Definition (Root Datum)

$$R = (X, \Phi, Y, \Phi^{\vee}), \quad \langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z}$$

- X, Y: dual free \mathbb{Z} -modules,
- put in duality by $\langle \cdot, \cdot \rangle$,
- $\Phi \subseteq X$: roots,
- $\Phi^{\vee} \subseteq Y$: coroots.

8 of 29

Definition (Root Datum)

$$R = (X, \Phi, Y, \Phi^{\vee}), \quad \langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z}$$

- > X, Y: dual free \mathbb{Z} -modules,
- put in duality by $\langle \cdot, \cdot \rangle$,
- $\Phi \subseteq X$: roots,
- $\Phi^{\vee} \subseteq Y$: coroots.

ce TU

Technische Universiteit **Eindhoven** University of Technology

9 of 29

Definition (Root Datum)

$$R = (X, \Phi, Y, \Phi^{\vee}), \quad \langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z}$$

Irreducible Root Data: $A_n^+, B_n^+, C_n^+, D_n^+, E_6^+, E_7^+, E_8^+, F_4^+, G_2^+$.

/ department of mathematics and computer science

e Technische Universiteit Eindhoven University of Technology

TU

/ department of mathematics and computer science

Chevalley Basis

Definition (Chevalley Basis)

Formal basis: $L = \bigoplus_{i=1,...,n} \mathbb{F}h_i \oplus \bigoplus_{\alpha \in \Phi} \mathbb{F}x_{\alpha}$

Bilinear anti-symmetric multiplication satisfies ($i, j \in \{1, ..., n\}; \alpha, \beta \in \Phi$):

$$\begin{array}{lll} \left[h_{i},h_{j}\right] &=& 0,\\ \left[x_{\alpha},h_{i}\right] &=& \langle\alpha,f_{i}\rangle x_{\alpha},\\ \left[x_{-\alpha},x_{\alpha}\right] &=& \sum_{i=1}^{n}\langle e_{i},\alpha^{\vee}\rangle h_{i},\\ \left[x_{\alpha},x_{\beta}\right] &=& \begin{cases} N_{\alpha,\beta}x_{\alpha+\beta} & \text{if } \alpha+\beta\in\Phi,\\ 0 & \text{otherwise,} \end{cases} \\ \text{and the Jacobi identity.} \end{array}$$

Chevalley Basis

Definition (Chevalley Basis)

Formal basis: $L = \bigoplus_{i=1,...,n} \mathbb{F}h_i \oplus \bigoplus_{\alpha \in \Phi} \mathbb{F}x_{\alpha}$

Bilinear anti-symmetric multiplication satisfies ($i, j \in \{1, ..., n\}; \alpha, \beta \in \Phi$):

Why Chevalley bases?

- Because transformation between two Chevalley bases is an automorphism of L,
- So we can test isomorphism between two Lie algebras (and find isomorphisms!) by computing Chevalley bases.

TU e Technische Universiteit Eindhoven University of Technology

13 of 29

Why?

Outline

- What is a Lie algebra?
- What is a Chevalley basis?
- How to compute Chevalley bases?
- What next?

15 of 29

/ department of mathematics and computer science

- Given a Lie algebra (on a computer),
- Want to know which Lie algebra it is,
- **So want to compute a Chevalley basis for it (if possible).**

 Assume splitting Cartan subalgebra H is given (Cohen/Murray, indep. Ryba);

Assume root datum R is given

/ department of mathematics and computer science

• Char. 0, $p \ge 5$: De Graaf, Murray; implemented in GAP, MAGMA

/ department of mathematics and computer science

TU/e Technische Universiteit Eindhoven University of Technology

• Char. 0, $p \ge 5$: De Graaf, Murray; implemented in GAP, MAGMA

Char. 2,3: R., 2009, Implemented in Мадма

/ department of mathematics and computer science

The Problems

Normally:

- Diagonalise L using action of H on L (gives set of x_{α}),
- Use Cartan integers $\langle lpha, \beta
 angle$ to "identify" the x_{lpha} ,
- Solve easy linear equations.

The Problems

Normally:

- Diagonalise L using action of H on L (gives set of x_{α}),
- Use Cartan integers $\langle lpha, \beta \rangle$ to "identify" the x_{lpha} ,
- Solve easy linear equations.

The Problems

Normally:

- Diagonalise L using action of H on L (gives set of x_{α}), X
- \mathbf{X} Use Cartan integers $\langle \alpha, \beta \rangle$ to "identify" the x_{α} ,
- Solve easy linear equations.

/ department of mathematics and computer science

t

/ department of mathematics and computer science

TUCE Technische Universiteit Eindhoven University of Technology

/ department of mathematics and computer science

$$\mathbf{x}_{\alpha} \qquad \mathbf{H} \qquad \mathbf{x}_{\alpha}$$

$$\mathbf{A}_{1}^{\mathrm{Ad}} : X = Y = \mathbb{Z}$$

$$\Phi = \{\alpha = 1, -\alpha = -1\},$$

$$\Phi^{\vee} = \{\alpha^{\vee} = 2, -\alpha^{\vee} = -2\},$$

$$\begin{bmatrix} h_{i}, h_{j} \end{bmatrix} = 0,$$

$$[x_{\alpha}, h_{i}] = \langle \alpha, f_{i} \rangle x_{\alpha},$$

$$[x_{-\alpha}, x_{\alpha}] = \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i},$$

$$[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha,\beta} x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Phi, \\ 0 & \text{otherwise,} \\ 0 & \text{otherwise,} \end{cases}$$
and the Jacobi identity.

 $L = \mathbb{F}h \oplus \mathbb{F}x_{\alpha} \oplus \mathbb{F}x_{-\alpha}$

TU/e Technische Universiteit Eindhoven University of Technology

20 of 29

/ department of mathematics and computer science

$$\begin{array}{c|cccc} & x_{\alpha} & x_{-\alpha} & h \\ \hline x_{\alpha} & 0 & \langle e_{1}, \alpha^{\vee} \rangle h & \langle \alpha, f_{1} \rangle x_{\alpha} \\ x_{-\alpha} & 0 & \langle -\alpha, f_{1} \rangle x_{-\alpha} \\ h & 0 & 0 \end{array}$$

/ department of mathematics and computer science

$$\begin{array}{c|c} \mathbf{x}_{\alpha} & \mathbf{H} & \mathbf{x}_{\alpha} \\ & \mathbf{A}_{1}^{\mathrm{Ad}} : X = Y = \mathbb{Z} \\ & \Phi = \{\alpha = 1, -\alpha = -1\}, \\ & \Phi^{\vee} = \{\alpha^{\vee} = 2, -\alpha^{\vee} = -2\}, \end{array} \end{array}$$

$$\begin{array}{c|c} [h_{i}, h_{j}] &= 0, \\ [x_{\alpha}, h_{i}] &= \langle \alpha, f_{i} \rangle x_{\alpha}, \\ [x_{-\alpha}, x_{\alpha}] &= \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i}, \\ [x_{\alpha}, x_{\beta}] &= \begin{cases} N_{\alpha,\beta} x_{\alpha+\beta} & \text{if } \alpha+\beta \in \Phi, \\ 0 & \text{otherwise,} \\ 0 & \text{otherwise,} \end{cases} \\ & \text{and the Jacobi identity.} \end{array}$$

TU/

Provide the Universiteit Eindhoven University of Technology

/ department of mathematics and computer science

	x_{lpha}	$x_{-\alpha}$	h
x_{lpha}	0	-2h	x_{lpha}
$x_{-\alpha}$	2h	0	$-x_{-\alpha}$
h	$-x_{\alpha}$	$x_{-\alpha}$	0

/ department of mathematics and computer science

TU e Technische Universiteit Eindhoven University of Technology

21 of 29

/ department of mathematics and computer science

21 of 29

Technische Universiteit

e Eindhoven University of Technology

Algorithm:

- Diagonalize L wrt H
- Find 1-dim eigenspaces:
 - S_1, S_{-1}, S_0
- Take

$$x + y \in S_1$$
$$x - \frac{1}{2}y \in S_{-1}$$
$$h \in S_0$$

Done!

/ department of mathematics and computer science

Algorithm:

- Diagonalize L wrt H
- Find 1-dim eigenspaces:

 S_1, S_{-1}, S_0

Take

$$x + y \in S_1$$
$$x - \frac{1}{2}y \in S_{-1}$$
$$h \in S_0$$

Done!

But in char. 2...

- Diagonalize L wrt H
- Find 1-dim eigenspace: S_0
- ► Find 2-dim eigenspace: S₁

Algorithm:

- Diagonalize L wrt H
- Find 1-dim eigenspaces:

 S_1, S_{-1}, S_0

Take

$$x + y \in S_1$$
$$x - \frac{1}{2}y \in S_{-1}$$
$$h \in S_0$$

Done!

But in char. 2...

- Diagonalize L wrt H
- Find 1-dim eigenspace: S_0
- ► Find 2-dim eigenspace: S₁

•••

 Not really an issue here (almost anything will do), but non-trivial in many other cases.

/ department of mathematics and computer science

In char. 3...

- Find 1 2-dim eigenspace,
- Find 6 1-dim eigenspaces,
- Find 2 3-dim eigenspaces.

In char. 3...

- Find 1 2-dim eigenspace,
- Find 6 1-dim eigenspaces,
- Find 2 3-dim eigenspaces.

In char. 3...

- Find 1 2-dim eigenspace,
- Find 6 1-dim eigenspaces,
- Find 2 3-dim eigenspaces.

/ department of mathematics and computer science

In char. 3...

- Find 1 2-dim eigenspace,
- Find 6 1-dim eigenspaces,
- Find 2 3-dim eigenspaces.

Observe:

- $\begin{bmatrix} \mathbb{F}x_{\beta}, \mathbb{F}x_{\pm(\alpha)} \end{bmatrix} = \mathbb{F}x_{\alpha+\beta} \\ \begin{bmatrix} \mathbb{F}x_{\beta}, \mathbb{F}x_{\pm(\alpha+\beta)} \end{bmatrix} = \mathbb{F}x_{-\alpha} \\ \begin{bmatrix} \mathbb{F}x_{\beta}, \mathbb{F}x_{\pm(2\alpha+\beta)} \end{bmatrix} = 0$

/ department of mathematics and computer science

In char. 3...

- Find 1 2-dim eigenspace,
- Find 6 1-dim eigenspaces,
- Find 2 3-dim eigenspaces.

Observe:

- $\begin{bmatrix} \mathbb{F}x_{\beta}, \mathbb{F}x_{\pm(\alpha)} \end{bmatrix} = \mathbb{F}x_{\alpha+\beta} \\ \begin{bmatrix} \mathbb{F}x_{\beta}, \mathbb{F}x_{\pm(\alpha+\beta)} \end{bmatrix} = \mathbb{F}x_{-\alpha} \\ \begin{bmatrix} \mathbb{F}x_{\beta}, \mathbb{F}x_{\pm(2\alpha+\beta)} \end{bmatrix} = 0$

So find root spaces in 3-dim S:

- For $\gamma \in \{\alpha, \alpha + \beta, 2\alpha + \beta\}$ compute $C_S(\mathbb{F}x_{\gamma},\mathbb{F}x_{-\gamma})$
 - TU

e Technische Universiteit Eindhoven University of Technology

Diagonalising (overview)

R(p)	Mults	Soln	R(p)	Mults	Soln
$A_2^{sc}(3)$	3^{2}	[Der]	$C_n^{\text{ad}}(2) \ (n \ge 3)$	$2n, 2^{n(n-1)}$	[C]
$G_2(3)$	$1^{6}, 3^{2}$	[C]	$C_n^{sc}(2) \ (n \ge 3)$	$\mathbf{2n}, 4^{\binom{n}{2}}$	$[B_2^{sc}]$
$A_3^{sc,(2)}(2)$	4^{3}	[Der]	$\mathbf{D}_{4}^{(1),(n-1),(n)}(2)$	4^{6}	[Der]
$B_2^{ad}(2)$	$2^2, 4$	[C]	$\mathrm{D}_4^{\mathrm{sc}}(2)$	8^3	[Der]
$\mathbf{B}_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2^n, 4^{\binom{n}{2}}$	[C]	$D_n^{(1)}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$B_2^{sc}(2)$	4 , 4	$[B_2^{sc}]$	$\mathbf{D}_n^{\mathrm{sc}}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$\mathrm{B}_3{}^{\mathrm{sc}}(2)$	6^3	[Der]	$F_4(2)$	$2^{12}, 8^3$	[C]
$\mathrm{B}_4{}^{\mathrm{sc}}(2)$	$2^4, 8^3$	[Der]	$G_2(2)$	4^{3}	[Der]
$B_n^{\rm sc}(2) \ (n \ge 5)$	$2^{n}, 4^{\binom{n}{2}}$	[C]	all remaining (2)	$2^{ \Phi^+ }$	$[A_2]$

TU/

e

24 of 29

Technische Universiteit **Eindhoven** University of Technology

 $B_n^{sc}(2) \ (n \ge 5) \quad 2^n, 4^{\binom{n}{2}} \quad [C]$

TABLE 1. Multidimensional root spaces

Friday, May 29, 2009

matics and computer science

Diagonalising (overview)

R(p)	Mults	Soln	R(p)	Mults	Soln
$A_2^{sc}(3)$	3^{2}	[Der]	$C_n^{\text{ad}}(2) \ (n \ge 3)$	$2n, 2^{n(n-1)}$	[C]
$G_2(3)$	$1^{6}, 3^{2}$	[C]	$C_n^{sc}(2) \ (n \ge 3)$	$\mathbf{2n},4^{\binom{n}{2}}$	$[B_2^{sc}]$
$A_3^{sc,(2)}(2)$	4^{3}	[Der]	$\mathbf{D}_{4}^{(1),(n-1),(n)}(2)$	4^{6}	[Der]
$B_2^{ad}(2)$	$2^2, 4$	[C]	$\mathrm{D_4^{sc}(2)}$	8^3	[Der]
$\mathbf{B}_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2^n, 4^{\binom{n}{2}}$	[C]	$D_n^{(1)}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$B_2^{sc}(2)$	4 , 4	$[B_2^{sc}]$	$\mathbf{D}_n^{\mathrm{sc}}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$B_3^{sc}(2)$	6^3	[Der]	$F_4(2)$	$2^{12}, 8^3$	[C]
$\mathrm{B}_4{}^{\mathrm{sc}}(2)$	$2^4, 8^3$	[Der]	$G_{2}(2)$	4^{3}	[Der]

(all remaining(2))

 $B_n^{sc}(2) \ (n \ge 5) \quad 2^n, 4^{\binom{n}{2}} \quad [C]$

TABLE 1. Multidimensional root spaces

matics and computer science

 $2^{|\Phi^+|}$

 $[A_2]$

Diagonalising (overview)

R(p)	Mults	Soln	R(p)	Mults	Soln
$A_2^{sc}(3)$	3^2	[Der]	$C_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2n, 2^{n(n-1)}$	[C]
$G_2(3)$	$1^{6}, 3^{2}$	[C]	$C_n^{sc}(2) \ (n \ge 3)$	$\mathbf{2n}, 4^{\binom{n}{2}}$	$[B_2^{sc}]$
$A_3^{sc,(2)}(2)$	4^{3}	[Der]	$\mathbf{D}_{4}^{(1),(n-1),(n)}(2)$	4^{6}	[Der]
$B_2^{ad}(2)$	$2^2, 4$	[C]	$\mathrm{D}_4^{\mathrm{sc}}(2)$	8^3	[Der]
$\mathbf{B}_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2^{n}, 4^{\binom{n}{2}}$	[C]	$D_n^{(1)}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$B_2^{sc}(2)$	4, 4	$[B_2^{sc}]$	$\mathrm{D}_n^{\mathrm{sc}}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$\mathrm{B}_3^{\mathrm{sc}}(2)$	6^3	[Der]	$F_4(2)$	$2^{12}, 8^3$	[C]
$\mathrm{B}_4{}^{\mathrm{sc}}(2)$	$2^4, 8^3$	[Der]	$G_2(2)$	4^{3}	[Der]
$\mathbf{B}_n^{\mathrm{sc}}(2) \ (n \ge 5)$	$2^{n}, 4^{\binom{n}{2}}$	[C]	all remaining (2)	$2^{ \Phi^+ }$	$[A_2]$

TABLE 1. Multidimensional root spaces

matics and computer science

/ department of mathematics and computer science

• $Der(L) = \{ d \in End(L) \mid d([x, y]) = [d(x), y] + [x, d(y)] \}$

/ department of mathematics and computer science

- $Der(L) = \{ d \in End(L) \mid d([x, y]) = [d(x), y] + [x, d(y)] \}$
- Observe:
 - Der(L) is a Lie algebra
 - (almost) $L \subseteq Der(L)$

- $\blacktriangleright \operatorname{Der}(L) = \{ d \in \operatorname{End}(L) \mid d([x, y]) \neq$
- Observe:
 - Der(L) is a Lie algebra
 - (almost) $L \subseteq Der(L)$

 $\begin{aligned} \operatorname{ad}_{z}([x, y]) &= & [z, [x, y]] \\ &= & -[x, [y, z]] - [y, [z, x]] \\ &= & [x, [z, y]] + [[z, x], y] \\ &= & [x, \operatorname{ad}_{z}(y)] + [\operatorname{ad}_{z}(x), y] \end{aligned}$

26 of 29

Simply Connected

 $x_{\alpha+\beta}$

 $X_{-\beta}$

 \mathbf{x}_{α}

26 of 29

Simply Connected Xβ $X_{\alpha+\beta}$ X_{-a} H \mathbf{x}_{α} $X_{-\beta}$ $\mathbf{X}_{-\alpha-\beta}$

6 one-dimensional spaces

Simply Connected x_{α} $x_{\alpha+\beta}$ $x_{\alpha+\beta}$ x_{α} x_{α} x_{α}

6 one-dimensional spaces

2 three-dimensional spaces

/ department of mathematics and computer science

6 one-dimensional spaces

2 three-dimensional spaces

/ department of mathematics and computer science

Outline

- What is a Lie algebra?
- What is a Chevalley basis?
- How to compute Chevalley bases?
- What next?

27 of 29

- Main challenges for computing Chevalley bases in small characteristic:
 - Multidimensional eigenspaces,
 - Broken root chains;

28 of 29

/ department of mathematics and computer science

- Main challenges for computing Chevalley bases in small characteristic:
 - Multidimensional eigenspaces,
 - Broken root chains;
- Found solutions for all cases, and implemented these:
 - MAGMA package, about 6000 lines,
 - soon to be available.

- Main challenges for computing Chevalley bases in small characteristic:
 - Multidimensional eigenspaces,
 - Broken root chains;
- Found solutions for all cases, and implemented these:
 - MAGMA package, about 6000 lines,
 - soon to be available.
- To do:
 - Compute split Cartan subalgebras in small characteristic;

28 of 29

- Main challenges for computing Chevalley bases in small characteristic:
 - Multidimensional eigenspaces,
 - Broken root chains;
- Found solutions for all cases, and implemented these:
 - MAGMA package, about 6000 lines,
 - soon to be available.
- To do:
 - Compute split Cartan subalgebras in small characteristic;
- Bigger picture:
 - Recognition of groups or Lie algebras,
 - Finding conjugators for Lie group elements,
 - Finding automorphisms of Lie algebras,

• •••

/ department of mathematics and computer science

Outline

- What is a Lie algebra?
- What is a Chevalley basis?
- How to compute Chevalley bases?
- What next?

Questions?

