Construction of Chevalley Bases in all Characteristics

Dan Roozemond

Technische Universiteit
Eindhoven
University of Technology

- What is a Lie algebra?
- What is a Chevalley basis?
- How to compute Chevalley bases?
- What next?

What is a Lie Algebra?

- Vector space: \mathbb{F}^{n}

/ department of mathematics and computer science

What is a Lie Algebra?

- Vector space: \mathbb{F}^{n}
- Multiplication $[\cdot, \cdot]: L \times L \mapsto L$ that is
- Bilinear,
- Anti-symmetric,
- Satisfies Jacobi identity:

$$
[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0
$$

What is a Lie Algebra?

- Vector space: \mathbb{F}^{n}
- Multiplication
- Bilinear
- Anti-sym $\mathbb{K}^{1 / L}$
- Satisfies Jacol

$$
[x,[y, z]]+[z,[x, y]]=0
$$

Simple Lie algebras

Classification (Killing, Cartan)

If $\operatorname{char}(\mathbb{F})=0$ and \mathbb{F} algebraically closed, then the only simple Lie algebras are:

$$
\begin{array}{ll}
\mathrm{A}_{n}(n \geq 1) & \mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8} \\
\mathrm{~B}_{n}(n \geq 2) & \mathrm{F}_{4} \\
\mathrm{C}_{n}(n \geq 3) & \mathrm{G}_{2} \\
\mathrm{D}_{n}(n \geq 4) &
\end{array}
$$

Why Study Lie Algebras?

Why Study Lie Algebras?

- Study groups by their Lie algebras:
- Simple algebraic group G «-> Unique Lie algebra L
- Many properties carry over to L
- Easier to calculate in L
- $G \leq \operatorname{Aut}(\mathrm{L})$, often even $\mathrm{G}=\operatorname{Aut}(\mathrm{L})$

Why Study Lie Algebras?

- Study groups by their Lie algebras:
- Simple algebraic group G «-> Unique Lie algebra L
- Many properties carry over to L
- Easier to calculate in L
- $G \leq \operatorname{Aut}(\mathrm{L})$, often even $\mathrm{G}=\operatorname{Aut}(\mathrm{L})$
- Opportunities for:
- Recognition
- Conjugation
- ...

Why Study Lie Algebras?

- Study groups by their Lie algebras:
- Simple algebraic group G <-> Unique Lie algebra L
- Many properties carry over to L
- Easier to calculate in L
- $G \leq \operatorname{Aut}(\mathrm{L})$, often even $\mathrm{G}=\operatorname{Aut}(\mathrm{L})$
- Opportunities for:
- Recognition
- Conjugation
- Because there are problems to be solved!
- ... and a thesis to be written...

Chevalley Bases

Many Lie algebras have a Chevalley basis!

Root Systems

- A hexagon

Root Systems

- A hexagon

Root Systems

- A hexagon

Root Systems

- A hexagon
- A root system of type A_{2}

Root Data

Definition (Root Datum)

$$
R=\left(X, \Phi, Y, \Phi^{\vee}\right), \quad\langle\cdot \cdot \cdot\rangle: X \times Y \rightarrow \mathbb{Z}
$$

Root Data

Definition (Root Datum)

$$
R=\left(X, \Phi, Y, \Phi^{\vee}\right), \quad\langle\cdot, \cdot\rangle: X \times Y \rightarrow \mathbb{Z}
$$

- X, Y: dual free \mathbb{Z}-modules,
- put in duality by $\langle\cdot, \cdot\rangle$,
- $\Phi \subseteq X$: roots,
- $\Phi^{\vee} \subseteq Y$: coroots.

Root Data

Definition (Root Datum)

$$
R=\left(X, \Phi, Y, \Phi^{\vee}\right), \quad\langle\cdot \cdot \cdot\rangle: X \times Y \rightarrow \mathbb{Z}
$$

- X, Y: dual free \mathbb{Z}-modules,
- put in duality by $\langle\cdot, \cdot\rangle$,
- $\Phi \subseteq X$: roots,
- $\Phi^{\vee} \subseteq Y$: coroots.

Root Data

Definition (Root Datum)

$$
R=\left(X, \Phi, Y, \Phi^{\vee}\right), \quad\langle\cdot \cdot \cdot\rangle: X \times Y \rightarrow \mathbb{Z}
$$

Irreducible Root Data: $\mathrm{A}_{n}^{\prime}, \mathrm{B}_{n}, \mathrm{C}_{n}^{\dot{\prime}}, \mathrm{D}_{n}^{\dot{\prime}}, \mathrm{E}_{\dot{6}}^{\dot{6}}, \mathrm{E}_{7}, \mathrm{E}_{\dot{8}}, \mathrm{~F}_{4}^{\dot{4}}, \mathrm{G}_{2}^{\dot{2}}$.

Root Data

- A hexagon
- A root system of type A_{2}

Root Data

- A hexagon
- A root system of type A_{2}
- A Lie algebra of type A_{2}

Chevalley Basis

Definition (Chevalley Basis)

Formal basis: $\quad L=\bigoplus_{i=1, \ldots, n} \mathbb{F} h_{i} \oplus \bigoplus_{\alpha \in \Phi} \mathbb{F} x_{\alpha}$
Bilinear anti-symmetric multiplication satisfies ($i, j \in\{1, \ldots, n\} ; \alpha, \beta \in \Phi$):

$$
\begin{aligned}
{\left[h_{i}, h_{j}\right] } & =0, \\
{\left[x_{\alpha}, h_{i}\right] } & =\left\langle\alpha, f_{i}\right\rangle x_{\alpha}, \\
{\left[x_{-\alpha}, x_{\alpha}\right] } & =\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i}, \\
{\left[x_{\alpha}, x_{\beta}\right] } & = \begin{cases}N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi, \\
0 & \text { otherwise },\end{cases} \\
& \text { and the Jacobi identity. }
\end{aligned}
$$

Chevalley Basis

Definition (Chevalley Basis)

Formal basis: $\quad L=\bigoplus_{i=1, \ldots, n} \mathbb{F} h_{i} \oplus \bigoplus_{\alpha \in \Phi} \mathbb{F} x_{\alpha}$
Bilinear anti-symmetric multiplication satisfies ($i, j \in\{1, \ldots, n\} ; \alpha, \beta \in \Phi$):

Why Chevalley bases?

- Because transformation between two Chevalley bases is an automorphism of L ,
- So we can test isomorphism between two Lie algebras (and find isomorphisms!) by computing Chevalley bases.

/ department of mathematics and computer science
Technische Universiteit Eindhoven University of Technology

Why?

Why?

/ department of mathematics and computer science
Technische Universiteit Eindhoven University of Technology

Why?

/ department of mathematics and computer science
Technische Universiteit Eindhoven University of Technology

Why?

equal

/ department of mathematics and computer science
Technische Universiteit Eindhoven University of Technology

Why?

isomorphic!

equal

/ department of mathematics and computer science
TU/e
Technische Universiteit Eindhoven University of Technology

Why?

Why?

/ department of mathematics and computer science
Technische Universiteit Eindhoven University of Technology

Why?

/ department of mathematics and computer science
Technische Universiteit Eindhoven University of Technology

Why?

not equal

Technische Universiteit Eindhoven University of Technology

Why?

- What is a Lie algebra?

What is a Chevaltey basis?

- How to compute Chevalley bases?
- What next?
/ department of mathematics and computer science

The Mission

- Given a Lie algebra (on a computer),
- Want to know which Lie algebra it is,
- So want to compute a Chevalley basis for it (if possible).

The Mission

- Assume splitting Cartan subalgebra H is given (Cohen/Murray, indep. Ryba);
- Assume root datum R is given

The Mission

- Char. $0, p \geq 5$: De Graaf, Murray; implemented in GAP, MAGMA

The Mission

- Char. $0, \mathrm{p} \geq 5$: De Graaf, Murray; implemented in GAP, MAGMA
- Char. 2,3: R., 2009, Implemented in MAGMA

The Problems

Normally:

- Diagonalise L using action of H on L (gives set of x_{α}),
- Use Cartan integers $\langle\alpha, \beta\rangle$ to "identify" the x_{α},
- Solve easy linear equations.

$$
\begin{aligned}
{\left[h_{i}, h_{j}\right] } & =0, \\
{\left[x_{\alpha}, h_{i}\right] } & =\left\langle\alpha, f_{i}\right\rangle x_{\alpha} \\
{\left[x_{-\alpha}, x_{\alpha}\right] } & =\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i} \\
{\left[x_{\alpha}, x_{\beta}\right] } & = \begin{cases}N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi \\
0 & \text { otherwise }\end{cases} \\
& \text { and the Jacobi identity. }
\end{aligned}
$$

The Problems

Normally:

- Diagonalise L using action of H on L (gives set of x_{α}),
- Use Cartan integers $\langle\alpha, \beta\rangle$ to "identify" the x_{α},
\checkmark Solve easy linear equations.

$$
\begin{aligned}
{\left[h_{i}, h_{j}\right] } & =0, \\
{\left[x_{\alpha}, h_{i}\right] } & =\left\langle\alpha, f_{i}\right\rangle x_{\alpha} \\
{\left[x_{-\alpha}, x_{\alpha}\right] } & =\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i} \\
{\left[x_{\alpha}, x_{\beta}\right] } & = \begin{cases}N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi \\
0 & \text { otherwise }\end{cases} \\
& \text { and the Jacobi identity. }
\end{aligned}
$$

The Problems

Normally:

X Diagonalise Lusing action of H on L (gives set of x_{α}),
X \quad Use Cartan integers $\langle\alpha, \beta\rangle$ to "identify" the x_{α},
\checkmark Solve easy linear equations.

$$
\begin{aligned}
{\left[h_{i}, h_{j}\right] } & =0, \\
{\left[x_{\alpha}, h_{i}\right] } & =\left\langle\alpha, f_{i}\right\rangle x_{\alpha} \\
{\left[x_{-\alpha}, x_{\alpha}\right] } & =\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i} \\
{\left[x_{\alpha}, x_{\beta}\right] } & = \begin{cases}N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi \\
0 & \text { otherwise }\end{cases} \\
& \text { and the Jacobi identity. }
\end{aligned}
$$

Diagonalising (A_{1}, char. 2)

$$
\begin{aligned}
{\left[h_{i}, h_{j}\right] } & =0, \\
{\left[x_{\alpha}, h_{i}\right] } & =\left\langle\alpha, f_{i}\right\rangle x_{\alpha}, \\
{\left[x_{-\alpha}, x_{\alpha}\right] } & =\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i}, \\
{\left[x_{\alpha}, x_{\beta}\right] } & = \begin{cases}N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi, \\
0 & \text { otherwise },\end{cases} \\
& \text { and the Jacobi identity. }
\end{aligned}
$$

Diagonalising (A_{1}, char. 2)

$\mathrm{X}_{-\alpha} \quad \frac{\mathrm{H}}{}$

$$
\begin{gathered}
\mathrm{A}_{1}^{\mathrm{Ad}}: X=Y=\mathbb{Z} \\
\Phi=\{\alpha=1,-\alpha=-1\}, \\
\Phi^{\vee}=\left\{\alpha^{\vee}=2,-\alpha^{\vee}=-2\right\},
\end{gathered}
$$

$$
\begin{aligned}
{\left[h_{i}, h_{j}\right] } & =0, \\
{\left[x_{\alpha}, h_{i}\right] } & =\left\langle\alpha, f_{i}\right\rangle x_{\alpha}, \\
{\left[x_{-\alpha}, x_{\alpha}\right] } & =\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i}, \\
{\left[x_{\alpha}, x_{\beta}\right] } & = \begin{cases}N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi, \\
0 & \text { otherwise, }\end{cases} \\
& \text { and the Jacobi identity. }
\end{aligned}
$$

Diagonalising (A_{1}, char. 2)

$\xrightarrow{\mathbf{X}_{-\alpha}}$

$$
\begin{gathered}
\mathrm{A}_{1}^{\mathrm{Ad}}: X=Y=\mathbb{Z} \\
\Phi=\{\alpha=1,-\alpha=-1\}, \\
\Phi^{\vee}=\left\{\alpha^{\vee}=2,-\alpha^{\vee}=-2\right\},
\end{gathered}
$$

$$
\begin{aligned}
& {\left[h_{i}, h_{j}\right] }=0, \\
& {\left[x_{\alpha}, h_{i}\right] }=\left\langle\alpha, f_{i}\right\rangle x_{\alpha}, \\
& {\left[x_{-\alpha}, x_{\alpha}\right] }=\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i}, \\
& {\left[x_{\alpha}, x_{\beta}\right] }= \begin{cases}N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi, \\
0 & \text { otherwise },\end{cases} \\
& \text { and the Jacobi identity. }
\end{aligned}
$$

$$
L=\mathbb{F} h \oplus \mathbb{F} x_{\alpha} \oplus \mathbb{F} x_{-\alpha}
$$

Diagonalising (A_{1}, char. 2)

$\xrightarrow{\mathrm{x}_{-\alpha}} \xrightarrow{\mathrm{H}}{ }^{\mathrm{x}_{\alpha}}$

$$
\begin{gathered}
\mathrm{A}_{1}^{\mathrm{Ad}}: X=Y=\mathbb{Z} \\
\Phi=\{\alpha=1,-\alpha=-1\}, \\
\Phi^{\vee}=\left\{\alpha^{\vee}=2,-\alpha^{\vee}=-2\right\},
\end{gathered}
$$

$$
\begin{aligned}
{\left[h_{i}, h_{j}\right] } & =0, \\
{\left[x_{\alpha}, h_{i}\right] } & =\left\langle\alpha, f_{i}\right\rangle x_{\alpha}, \\
{\left[x_{-\alpha}, x_{\alpha}\right] } & =\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i},
\end{aligned}
$$

$$
\left[x_{\alpha}, x_{\beta}\right]= \begin{cases}N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi, \\ 0 & \text { otherwise }\end{cases}
$$

and the Jacobi identity.

$$
L=\mathbb{F} h \oplus \mathbb{F} x_{\alpha} \oplus \mathbb{F} x_{-\alpha}
$$

	x_{α}	$x_{-\alpha}$	h
x_{α}	0	$\left\langle e_{1}, \alpha^{\vee}\right\rangle h$	$\left\langle\alpha, f_{1}\right\rangle x_{\alpha}$
$x_{-\alpha}$		0	$\left\langle-\alpha, f_{1}\right\rangle x_{-\alpha}$
h			0

Diagonalising (A_{1}, char. 2)

$\xrightarrow{\mathrm{x}_{-\alpha}} \xrightarrow{\mathrm{H}}{ }^{\mathrm{x}_{\alpha}}$

$$
\begin{gathered}
\mathrm{A}_{1}^{\mathrm{Ad}}: X=Y=\mathbb{Z} \\
\Phi=\{\alpha=1,-\alpha=-1\} \\
\Phi^{\vee}=\left\{\alpha^{\vee}=2,-\alpha^{\vee}=-2\right\},
\end{gathered}
$$

$$
\begin{aligned}
{\left[h_{i}, h_{j}\right] } & =0, \\
{\left[x_{\alpha}, h_{i}\right] } & =\left\langle\alpha, f_{i}\right\rangle x_{\alpha}, \\
{\left[x_{-\alpha}, x_{\alpha}\right] } & =\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i}, \\
{\left[x_{\alpha}, x_{\beta}\right] } & =\left\{\begin{array}{ll}
N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi, \\
0 & \text { otherwise, }, \\
& \text { and the Jacobi identity. }
\end{array} .\right.
\end{aligned}
$$

$$
L=\mathbb{F} h \oplus \mathbb{F} x_{\alpha} \oplus \mathbb{F} x_{-\alpha}
$$

\(\left.\begin{array}{c|ccc|ccc} \& x_{\alpha} \& x_{-\alpha} \& h

\hline x_{\alpha} \& 0 \& \left\langle e_{1}, \alpha^{\vee}\right\rangle h \& \left\langle\alpha, f_{1}\right\rangle x_{\alpha}

x_{-\alpha} \& \& 0 \& \left\langle-\alpha, f_{1}\right\rangle x_{-\alpha}

h \& \& \& 0\end{array}\right\rangle\)\begin{tabular}{c}

x_{α}

$x_{-\alpha}$

h

\& 0 \& $-2 h$ \& 0

$-x_{\alpha}$ \& $x_{-\alpha}$ \& 0
\end{tabular}

Diagonalising (A_{1}, char. 2)

	x_{α}	$x_{-\alpha}$	h
x_{α}	0	$-2 h$	x_{α}
$x_{-\alpha}$	$2 h$	0	$-x_{-\alpha}$
h	$-x_{\alpha}$	$x_{-\alpha}$	0

Diagonalising (A_{1}, char. 2)

	x_{α}	$x_{-\alpha}$	h
x_{α}	0	$-2 h$	x_{α}
$x_{-\alpha}$	$2 h$	0	$-x_{-\alpha}$
h	$-x_{\alpha}$	$x_{-\alpha}$	0

Basis transformation....

$$
\begin{aligned}
x & =x_{\alpha}-x_{-\alpha} \\
y & =2 x_{\alpha}+x_{-\alpha}
\end{aligned}
$$

Diagonalising (A_{1}, char. 2)

	x_{α}	$x_{-\alpha}$	h
x_{α}	0	$-2 h$	x_{α}
$x_{-\alpha}$	$2 h$	0	$-x_{-\alpha}$
$h h$	$-x_{\alpha}$	$x_{-\alpha}$	0

Basis transformation....

$$
\begin{aligned}
& x=x_{\alpha}-x_{-\alpha} \\
& y=2 x_{\alpha}+x_{-\alpha}
\end{aligned}
$$

Diagonalising (A_{1}, char. 2)

Diagonalising (A_{1}, char. 2)

Algorithm:

- Diagonalize L wrt H
- Find 1-dim eigenspaces:

$$
S_{1}, S_{-1}, S_{0}
$$

- Take

$$
\begin{gathered}
x+y \in S_{1} \\
x-\frac{1}{2} y \in S_{-1} \\
h \in S_{0}
\end{gathered}
$$

- Done!

Diagonalising (A_{1}, char. 2)

Algorithm:

- Diagonalize L wrt H
- Find 1-dim eigenspaces:

$$
S_{1}, S_{-1}, S_{0}
$$

- Take

$$
\begin{gathered}
x+y \in S_{1} \\
x-\frac{1}{2} y \in S_{-1} \\
h \in S_{0}
\end{gathered}
$$

- Done!

Diagonalising (A_{1}, char. 2)

Algorithm:

- Diagonalize L wrt H
- Find 1-dim eigenspaces:

$$
S_{1}, S_{-1}, S_{0}
$$

- Take

$$
\begin{gathered}
x+y \in S_{1} \\
x-\frac{1}{2} y \in S_{-1} \\
h \in S_{0}
\end{gathered}
$$

- Done!

But in char. 2...

- Diagonalize L wrt H
- Find 1-dim eigenspace: S_{0}
- Find 2-dim eigenspace: S_{1}
- ...
- Not really an issue here (almost anything will do), but non-trivial in many other cases.

Diagonalising (G2, char. 3)

Diagonalising (G2, char. 3)

In char. 3...

- Find 1 2-dim eigenspace,
- Find 6 1-dim eigenspaces,
- Find 2 3-dim eigenspaces.

Diagonalising (G2, char. 3)

In char. 3...

- Find 1 2-dim eigenspace,
- Find 6 1-dim eigenspaces,
- Find 2 3-dim eigenspaces.

Diagonalising (G2, char. 3)

In char. 3...

- Find 1 2-dim eigenspace,
- Find 6 1-dim eigenspaces,
- Find 2 3-dim eigenspaces.

Diagonalising (G2, char. 3)

In char. 3...

- Find 1 2-dim eigenspace,
- Find 6 1-dim eigenspaces,
- Find 2 3-dim eigenspaces.

Observe:

$\begin{aligned} {\left[\mathbb{F} x_{\beta}, \mathbb{F} x_{ \pm(\alpha)}\right] } & =\mathbb{F} x_{\alpha+\beta} \\ {\left[\mathbb{F} x_{\beta}, \mathbb{F} x_{ \pm(\alpha+\beta)}\right] } & =\mathbb{F} x_{-\alpha} \\ {\left[\mathbb{F} x_{\beta}, \mathbb{F} x_{ \pm(2 \alpha+\beta)}\right] } & =0\end{aligned}$

Diagonalising (G2, char. 3)

In char. 3...

- Find 1 2-dim eigenspace,
- Find 6 1-dim eigenspaces,
- Find 2 3-dim eigenspaces.

Observe:

$\left[\mathbb{F} x_{\beta}, \mathbb{F} x_{ \pm(\alpha)}\right]$	$=\mathbb{F} x_{\alpha+\beta}$
$\left[\mathbb{F} x_{\beta}, \mathbb{F} x_{ \pm(\alpha+\beta)}\right]$	$=\mathbb{F} x_{-\alpha}$
$\cdot\left[\mathbb{F} x_{\beta}, \mathbb{F} x_{ \pm(2 \alpha+\beta)}\right]$	$=0$

So find root spaces in 3-dim S:

- For $\gamma \in\{\alpha, \alpha+\beta, 2 \alpha+\beta\}$ compute $C_{S}\left(\mathbb{F} x_{\gamma}, \mathbb{F} x_{-\gamma}\right)$

Diagonalising (overview)

$R(p)$	Mults	Soln		$R(p)$	Mults	Soln
$\mathrm{A}_{2}{ }^{\mathrm{sc}}(3)$	3^{2}	$[\mathrm{Der}]$		$\mathrm{C}_{n}{ }^{\text {ad }}(2)(n \geq 3)$	$2 n, 2^{n(n-1)}$	$[\mathrm{C}]$
$\mathrm{G}_{2}(3)$	$1^{6}, 3^{2}$	$[\mathrm{C}]$		$\mathrm{C}_{n}{ }^{\mathrm{sc}}(2)(n \geq 3)$	$\mathbf{2 n}, 4^{\binom{n}{2}}$	$\left[\mathrm{~B}_{2}^{\mathrm{sc}}\right]$
$\mathrm{A}_{3}^{\mathrm{sc},(2)}(2)$	4^{3}	$[\mathrm{Der}]$		$\mathrm{D}_{4}^{(1),(n-1),(n)}(2)$	4^{6}	$[\mathrm{Der}]$
$\mathrm{B}_{2}{ }^{\mathrm{ad}}(2)$	$2^{2}, 4$	$[\mathrm{C}]$		$\mathrm{D}_{4}^{\mathrm{sc}}(2)$	8^{3}	$[\mathrm{Der}]$
$\mathrm{B}_{n}{ }^{\mathrm{ad}}(2)(n \geq 3)$	$2^{n}, 4^{\binom{n}{2}}$	$[\mathrm{C}]$		$\mathrm{D}_{n}^{(1)}(2)(n \geq 5)$	$4^{\binom{n}{2}}$	$[\mathrm{Der}]$
$\mathrm{B}_{2}{ }^{\mathrm{sc}}(2)$	4,4	$\left[\mathrm{~B}_{2}^{\mathrm{sc}}\right]$		$\mathrm{D}_{n}{ }^{\mathrm{sc}}(2)(n \geq 5)$	$4^{\binom{n}{2}}$	$[\mathrm{Der}]$
$\mathrm{B}_{3}{ }^{\mathrm{sc}}(2)$	6^{3}	$[\mathrm{Der}]$	$\mathrm{F}_{4}(2)$	$2^{12}, 8^{3}$	$[\mathrm{C}]$	
$\mathrm{B}_{4}{ }^{\mathrm{sc}}(2)$	$2^{4}, 8^{3}$	$[\mathrm{Der}]$	$\mathrm{G}_{2}(2)$	4^{3}	$[\mathrm{Der}]$	
$\mathrm{B}_{n}{ }^{\mathrm{sc}}(2)(n \geq 5)$	$2^{n}, 4^{\binom{n}{2}}$	$[\mathrm{C}]$		all remaining (2)	$2^{\left\|\Phi^{+}\right\|}$	$\left[\mathrm{A}_{2}\right]$

Table 1. Multidimensional root spaces

Diagonalising (overview)

$R(p)$	Mults	Soln	$R(p)$	Mults	Soln
$\mathrm{A}_{2}{ }^{\mathrm{sc}}(3)$	3^{2}	[Der]	$\mathrm{C}_{n}{ }^{\text {ad }}(2)(n \geq 3)$	$2 n, 2^{n(n-1)}$	[C]
$\mathrm{G}_{2}(3)$	$1^{6}, 3^{2}$	[C]	$\mathrm{C}_{n}{ }^{\text {sc }}(2)(n \geq 3)$	2n, $4^{\binom{n}{2}}$	$\left[\mathrm{B}_{2}{ }^{\text {sc }}\right]$
$\mathrm{A}_{3}^{\text {sc,(2) }}(2)$	4^{3}	[Der]	$\mathrm{D}_{4}^{(1),(n-1),(n)}(2)$	4^{6}	[Der]
$\mathrm{B}_{2}{ }^{\text {ad }}(2)$	$2^{2}, 4$	[C]	$\mathrm{D}_{4}{ }^{\text {sc }}(2)$	8^{3}	[Der]
$\mathrm{B}_{n}{ }^{\text {ad }}(2)(n \geq 3)$	$2^{n}, 4^{\binom{n}{2}}$	[C]	$\mathrm{D}_{n}^{(1)}(2)(n \geq 5)$	$4\binom{n}{2}$	[Der]
$\mathrm{B}_{2}{ }^{\text {sc }}(2)$	4,4	$\left[\mathrm{B}_{2}{ }^{\text {sc }}\right]$	$\mathrm{D}_{n}{ }^{\text {sc }}(2)(n \geq 5)$	$4{ }^{\binom{n}{2}}$	[Der]
$\mathrm{B}_{3}{ }^{\text {sc }}$ (2)	6^{3}	[Der]	$\mathrm{F}_{4}(2)$	$2^{12}, 8^{3}$	[C]
$\mathrm{B}_{4}{ }^{\mathrm{sc}}$ (2)	$2^{4}, 8^{3}$	[Der]	$\mathrm{G}_{2}(2)$	4^{3}	[Der]
$\mathrm{B}_{n}{ }^{\mathrm{sc}}(2)(n \geq 5)$	$2^{n}, 4^{\binom{n}{2}}$	[C]	all remaining(2)	$2^{\left\|\Phi^{+}\right\|}$	[A_{2}])

Table 1. Multidimensional root spaces

Diagonalising (overview)

$R(p)$	Mults	Soln	$R(p)$	Mults	Soln
$\mathrm{A}_{2}{ }^{\text {sc }}(3)$	3^{2}	[Der]	$\mathrm{C}_{n}{ }^{\text {ad }}(2)(n \geq 3)$	$2 n, 2^{n(n-1)}$	[C]
$\mathrm{G}_{2}(3)$	$1^{6}, 3^{2}$	[C]	$\mathrm{C}_{n}{ }^{\text {sc }}(2)(n \geq 3)$	2n, $4^{\binom{n}{2}}$	$\left[\mathrm{B}_{2}{ }^{\text {sc }}\right]$
$\mathrm{A}_{3}^{\text {sc,(2) }}$ (2)	4^{3}	[Der]	$\mathrm{D}_{4}^{(1),(n-1),(n)}(2)$	4^{6}	[Der]
$\mathrm{B}_{2}{ }^{\text {ad }}(2)$	$2^{2}, 4$	[C]	$\mathrm{D}_{4}{ }^{\text {sc }}$ (2)	8^{3}	[Der]
$\mathrm{B}_{n}{ }^{\text {ad }}(2)(n \geq 3)$	$2^{n}, 4^{\binom{n}{2}}$	[C]	$\mathrm{D}_{n}^{(1)}(2)(n \geq 5)$	$4\binom{n}{2}$	[Der]
$\mathrm{B}_{2}{ }^{\mathrm{sc}}(2)$	4, 4	$\left[\mathrm{B}_{2}{ }^{\text {sc }}\right]$	$\mathrm{D}_{n}{ }^{\text {sc }}(2)(n \geq 5)$	$4{ }^{\binom{n}{2}}$	[Der]
$\mathrm{B}_{3}{ }^{\text {sc }}$ (2)	6^{3}	[Der]	$\mathrm{F}_{4}(2)$	$2^{12}, 8^{3}$	[C]
$\mathrm{B}_{4}{ }^{\text {sc }}$ (2)	$2^{4}, 8^{3}$	[Der]	$\mathrm{G}_{2}(2)$	4^{3}	[Der]
$\mathrm{B}_{n}{ }^{\text {sc }}(2)(n \geq 5)$	$2^{n}, 4^{\binom{n}{2}}$	[C]	all remaining(2)	$2^{\left\|\Phi^{+}\right\|}$	[A_{2}])

Table 1. Multidimensional root spaces

Derivation (Lie) Algebra

Derivation (Lie) Algebra

- $\operatorname{Der}(L)=\{d \in \operatorname{End}(L) \mid d([x, y])=[d(x), y]+[x, d(y)]\}$

Derivation (Lie) Algebra

- $\operatorname{Der}(L)=\{d \in \operatorname{End}(L) \mid d([x, y])=[d(x), y]+[x, d(y)]\}$
- Observe:
- $\operatorname{Der}(L)$ is a Lie algebra
- (almost) $L \subseteq \operatorname{Der}(L)$

Derivation (Lie) Algebra

- $\operatorname{Der}(L)=\{d \in \operatorname{End}(L) \mid d([x, y])$
- Observe:
- $\operatorname{Der}(L)$ is a Lie algebra
- (almost) $L \subseteq \operatorname{Der}(L)$
$\operatorname{ad}_{z}([x, y])=[z,[x, y]]$
$=-[x,[y, z]]-[y,[z, x]]$
$=[x,[z, y]]+[[z, x], y]$
$=\left[x, \operatorname{ad}_{z}(y)\right]+\left[\operatorname{ad}_{z}(x), y\right]$

Diagonalising (A_{2}, char. 3)

Adjoint

/ department of mathematics and computer science

Simply Connected

Diagonalising (A_{2}, char. 3)

Adjoint

6 one-dimensional spaces

/ department of mathematics and computer science

Simply Connected

Diagonalising (A_{2}, char. 3)

Adjoint

6 one-dimensional spaces

Simply Connected

2 three-dimensional spaces

Diagonalising (A2, char. 3)

Adjoint

6 one-dimensional spaces

Simply Connected

2 three-dimensional spaces

-What is a Lie algebra?

What is a Chevalley basis?

- How to compute Chevalley bases?
- What next?
/ department of mathematics and computer science

Conclusion

- Main challenges for computing Chevalley bases in small characteristic:
- Multidimensional eigenspaces,
- Broken root chains;

Conclusion

- Main challenges for computing Chevalley bases in small characteristic:
- Multidimensional eigenspaces,
- Broken root chains;
- Found solutions for all cases, and implemented these:
- MAGMA package, about 6000 lines,
- soon to be available.

Conclusion

- Main challenges for computing Chevalley bases in small characteristic:
- Multidimensional eigenspaces,
- Broken root chains;
- Found solutions for all cases, and implemented these:
- Magma package, about 6000 lines,
- soon to be available.
- To do:
- Compute split Cartan subalgebras in small characteristic;

Conclusion

- Main challenges for computing Chevalley bases in small characteristic:
- Multidimensional eigenspaces,
- Broken root chains;
- Found solutions for all cases, and implemented these:
- MAgMA package, about 6000 lines,
- soon to be available.
- To do:
- Compute split Cartan subalgebras in small characteristic;
- Bigger picture:
- Recognition of groups or Lie algebras,
- Finding conjugators for Lie group elements,
- Finding automorphisms of Lie algebras,

Outline

- Questions?

