Construction of Chevalley Bases of Lie Algebras

Dan Roozemond

Joint work with Arjeh M. Cohen

May 14th, 2009, Computeralgebratagung, Universität Kassel

http://www.win.tue.nl/~droozemo/

Outline

- What is a Lie algebra?
- What is a Chevalley basis?
- How to compute Chevalley bases?
- Does it work?
- What next?

What is a Lie Algebra?

Vector space: \mathbb{F}^n

What is a Lie Algebra?

- **Vector space:** \mathbb{F}^n
- Multiplication $[\cdot,\cdot]:L\times L\mapsto L$ that is
 - Bilinear,
 - Anti-symmetric,
 - Satisfies Jacobi identity:

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$

What is a Lie Algebra?

Vector space: \mathbb{F}^n

Multiplication

Satisfies Jaco

$$[x, [y, z]] + [z, [x, y]] = 0$$

Simple Lie algebras

Classification (Killing, Cartan)

If $char(\mathbb{F}) = 0$ or big enough then the only simple Lie algebras are:

$$A_n \ (n \ge 1)$$

$$E_6, E_7, E_8$$

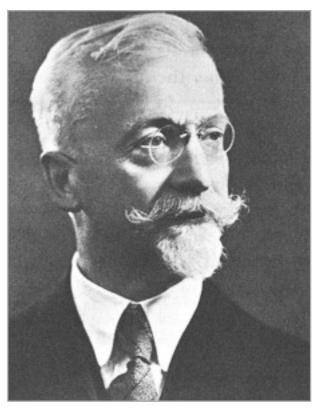
$$B_n \ (n \ge 2)$$

$$F_4$$

$$C_n \ (n \ge 3)$$

$$G_2$$

$$D_n \ (n \ge 4)$$



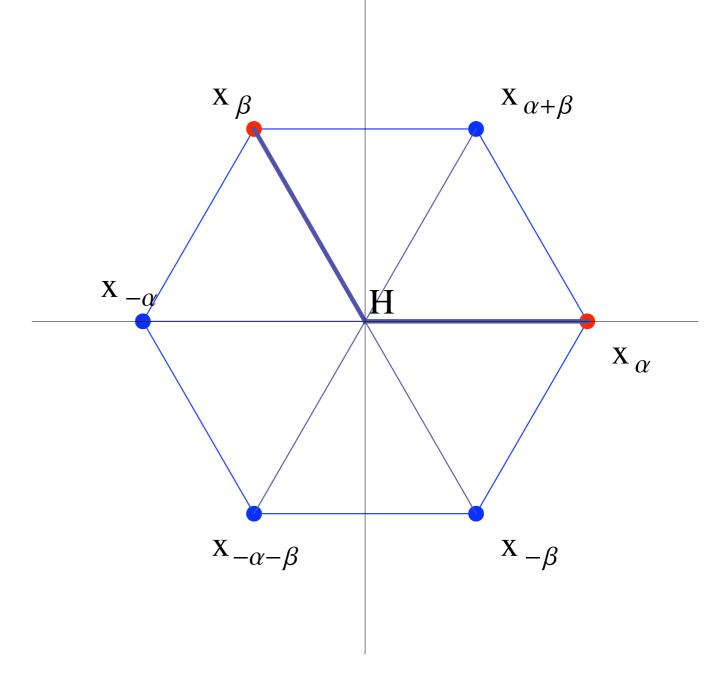
- Study groups by their Lie algebras:
 - Simple algebraic group G <-> Unique Lie algebra L
 - Many properties carry over to L
 - Easier to calculate in L
 - G ≤ Aut(L), often even G = Aut(L)

- Study groups by their Lie algebras:
 - Simple algebraic group G <-> Unique Lie algebra L
 - Many properties carry over to L
 - Easier to calculate in L
 - $G \leq Aut(L)$, often even G = Aut(L)
- Opportunities for:
 - Recognition
 - Conjugation
 - •

- Study groups by their Lie algebras:
 - Simple algebraic group G <-> Unique Lie algebra L
 - Many properties carry over to L
 - Easier to calculate in L
 - G ≤ Aut(L), often even G = Aut(L)
- Opportunities for:
 - Recognition
 - Conjugation
 - •
- Because there are problems to be solved!
 - ... and a thesis to be written...

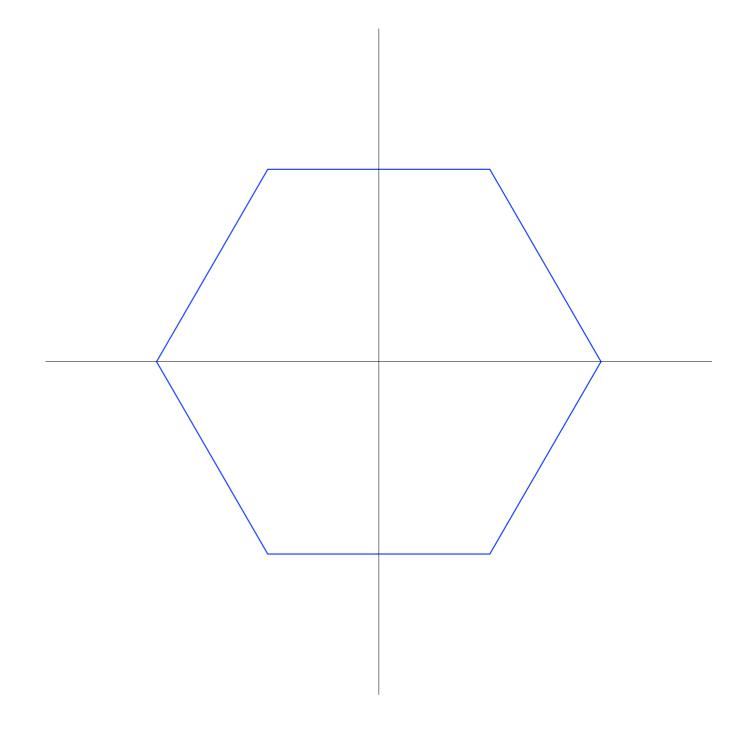
Chevalley Bases



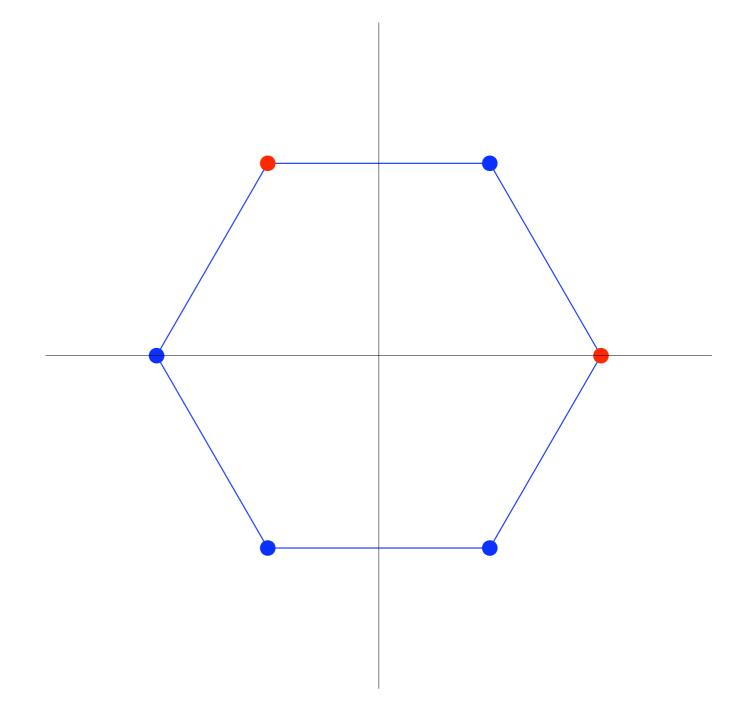


Many Lie algebras have a Chevalley basis!

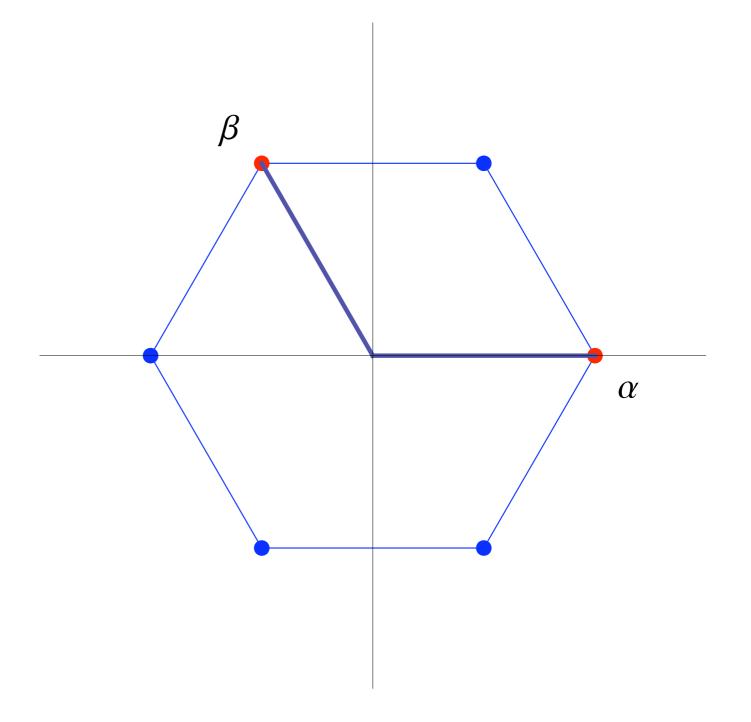
A hexagon



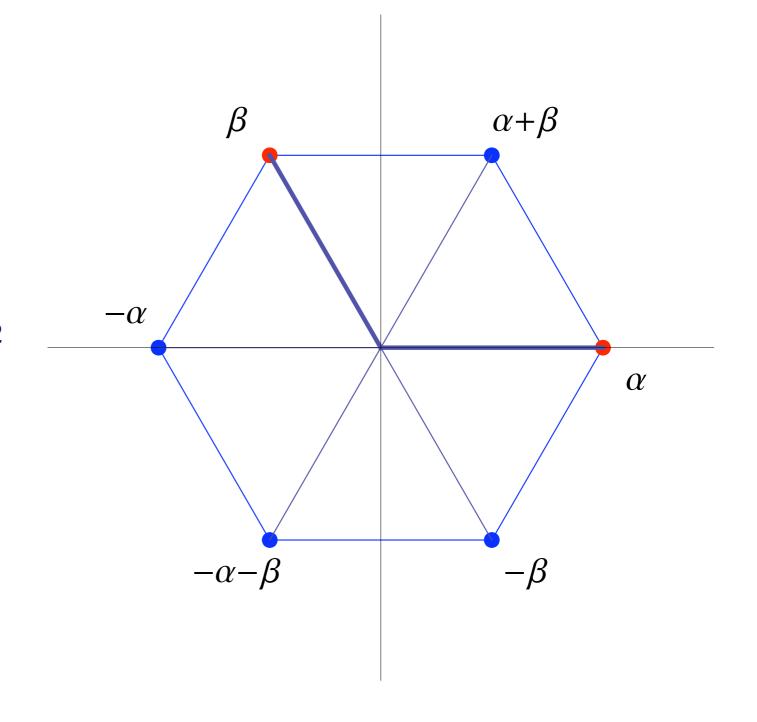
A hexagon



A hexagon



- A hexagon
- ► A root system of type A₂



Root Data

Definition (Root Datum)

$$R = (X, \Phi, Y, \Phi^{\vee}), \quad \langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z}$$

Root Data

Definition (Root Datum)

$$R = (X, \Phi, Y, \Phi^{\vee}), \quad \langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z}$$

- \blacktriangleright X, Y: dual free \mathbb{Z} -modules,
- put in duality by $\langle \cdot, \cdot \rangle$,
- $\Phi \subset X$: roots,
- ullet $\Phi^ee \subseteq Y$: coroots.

Definition (Root Datum)

$$R = (X, \Phi, Y, \Phi^{\vee}), \quad \langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z}$$

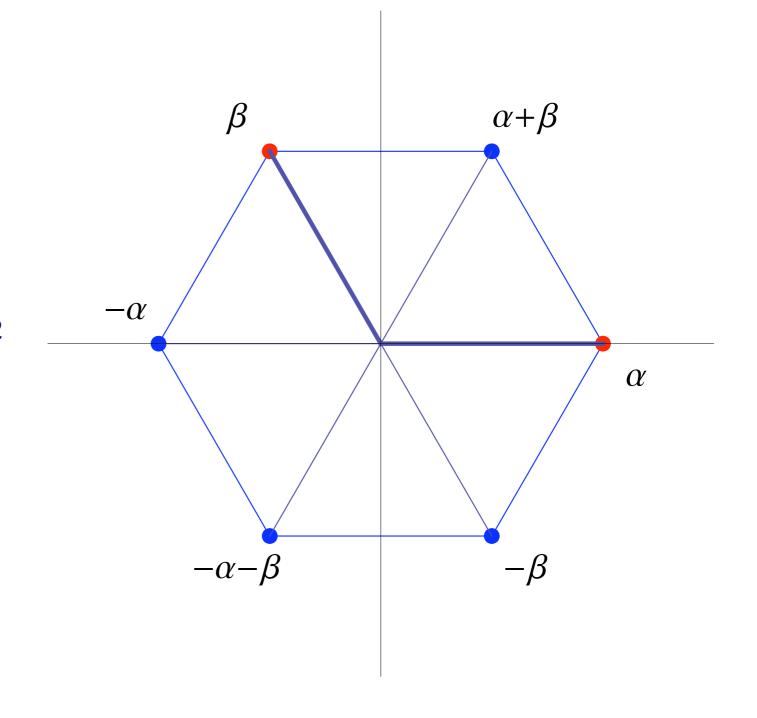
- ightharpoonup X, Y: dual free \mathbb{Z} -modules,
- put in duality by $\langle \cdot, \cdot \rangle$,
- $\Phi \subset X$: roots,
- ullet $\Phi^ee \subseteq Y$: coroots.

Definition (Root Datum)

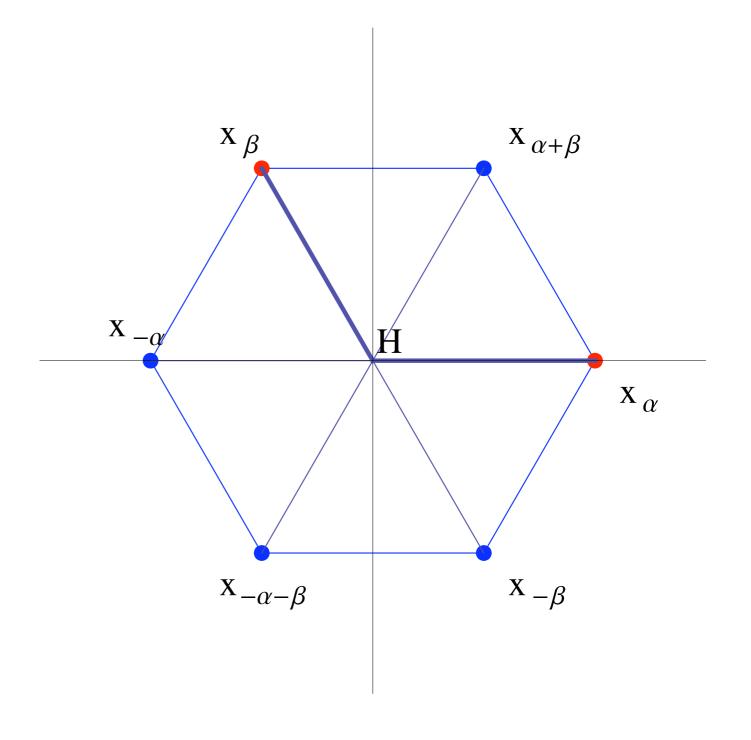
$$R = (X, \Phi, Y, \Phi^{\vee}), \quad \langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z}$$

Irreducible Root Data: $A_n^{\cdot}, B_n^{\cdot}, C_n^{\cdot}, D_n^{\cdot}, E_6^{\cdot}, E_7^{\cdot}, E_8^{\cdot}, F_4^{\cdot}, G_2^{\cdot}$.

- A hexagon
- ► A root system of type A₂



- A hexagon
- ► A root system of type A₂
- ► A Lie algebra of type A₂



Chevalley Basis

Definition (Chevalley Basis)

Formal basis:
$$L = \bigoplus_{i=1,...,n} \mathbb{F} h_i \oplus \bigoplus_{\alpha \in \Phi} \mathbb{F} x_\alpha$$

Bilinear anti-symmetric multiplication satisfies ($i, j \in \{1, \dots, n\}; \alpha, \beta \in \Phi$):

$$[h_{i}, h_{j}] = 0,$$

$$[x_{\alpha}, h_{i}] = \langle \alpha, f_{i} \rangle x_{\alpha},$$

$$[x_{-\alpha}, x_{\alpha}] = \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i},$$

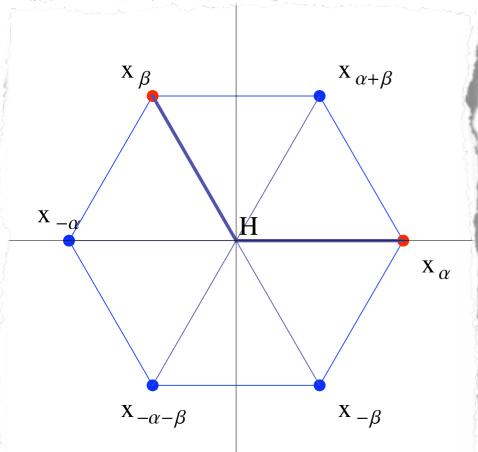
$$[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha, \beta} x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Phi, \\ 0 & \text{otherwise,} \end{cases}$$
and the Jacobi identity.

Chevalley Basis

Definition (Chevalley Basis)

Formal basis:
$$L = \bigoplus_{i=1,...,n} \mathbb{F} h_i \oplus \bigoplus_{\alpha \in \Phi} \mathbb{F} x_\alpha$$

Bilinear anti-symmetric multiplication satisfies ($i, j \in \{1, \dots, n\}; \alpha, \beta \in \Phi$):



$$[h_{i}, h_{j}] = 0,$$

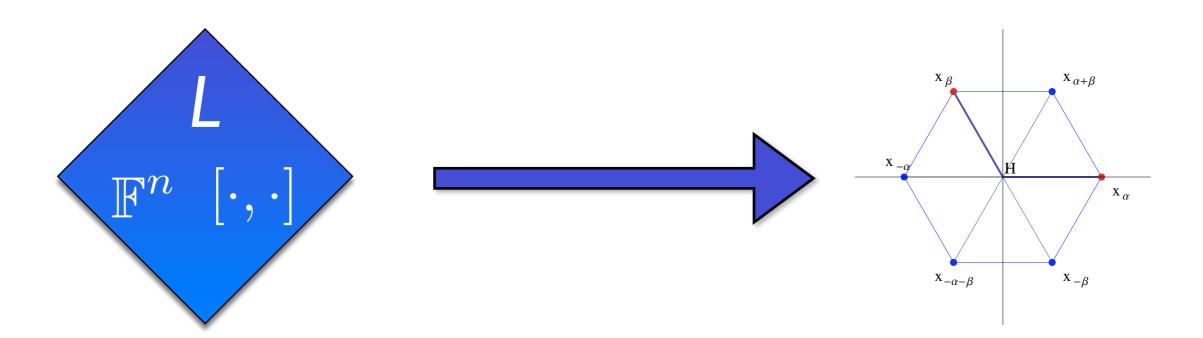
$$[x_{\alpha}, h_{i}] = \langle \alpha, f_{i} \rangle x_{\alpha},$$

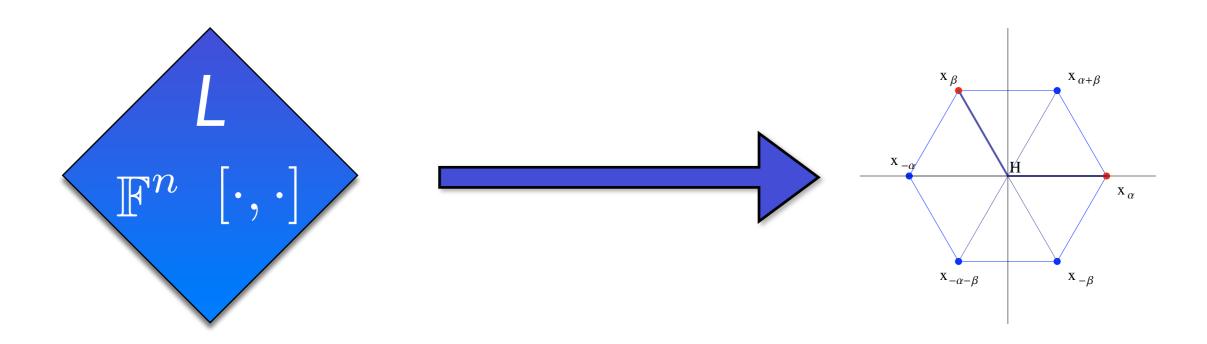
$$[x_{-\alpha}, x_{\alpha}] = \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i},$$

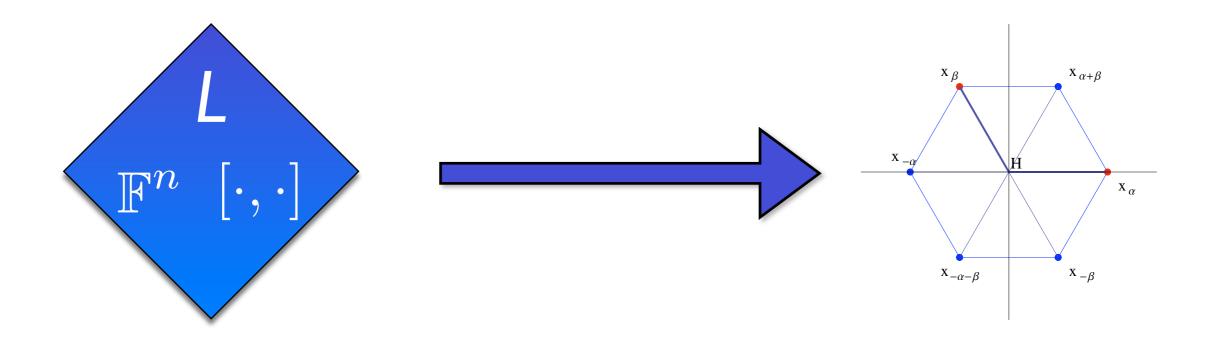
$$[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha, \beta} x_{\alpha + \beta} & \text{if } \alpha + \beta \in \Phi, \\ 0 & \text{otherwise,} \end{cases}$$
and the Jacobi identity.

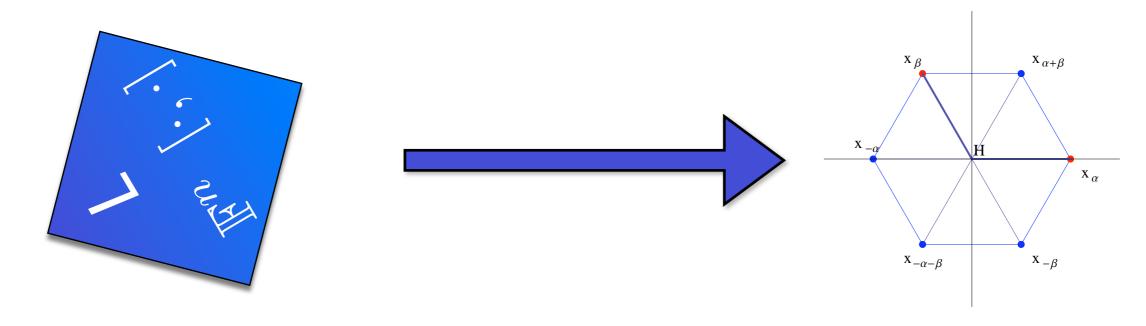
Why Chevalley bases?

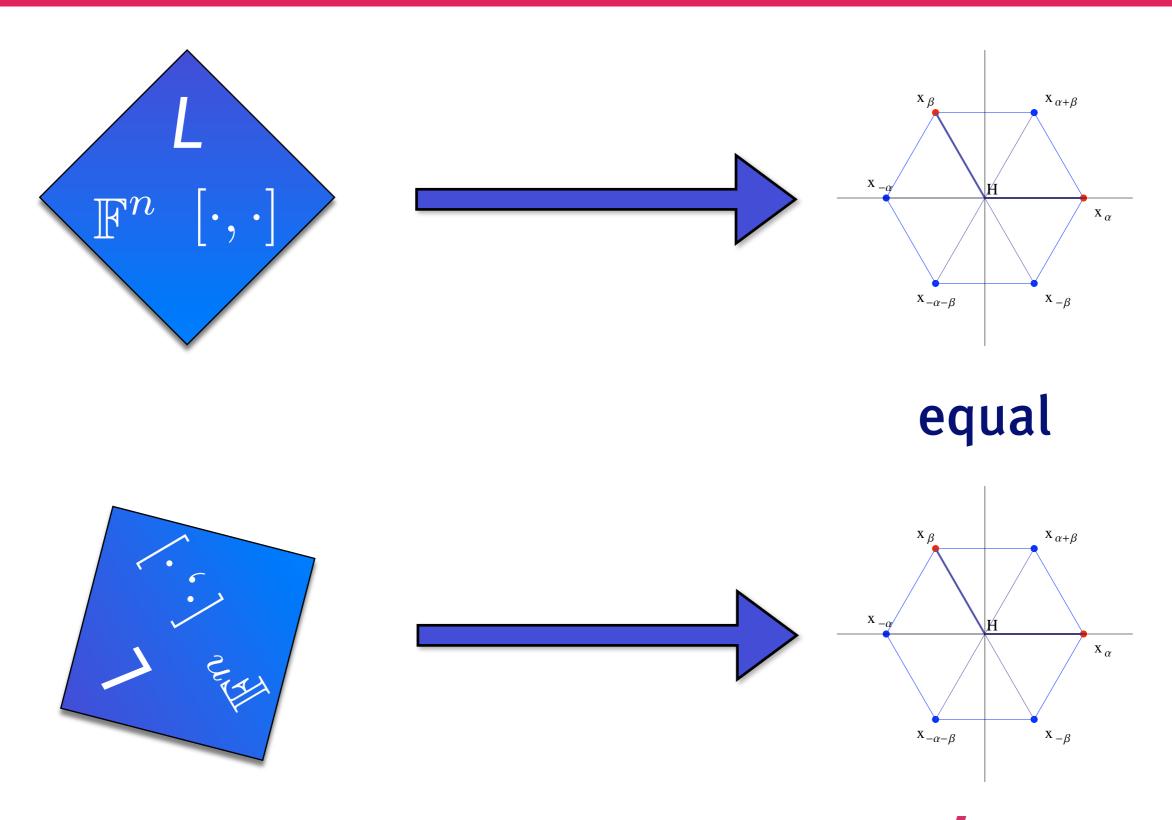
- Because transformation between two Chevalley bases is an automorphism of L,
- So we can test isomorphism between two Lie algebras (and find isomorphisms!) by computing Chevalley bases.

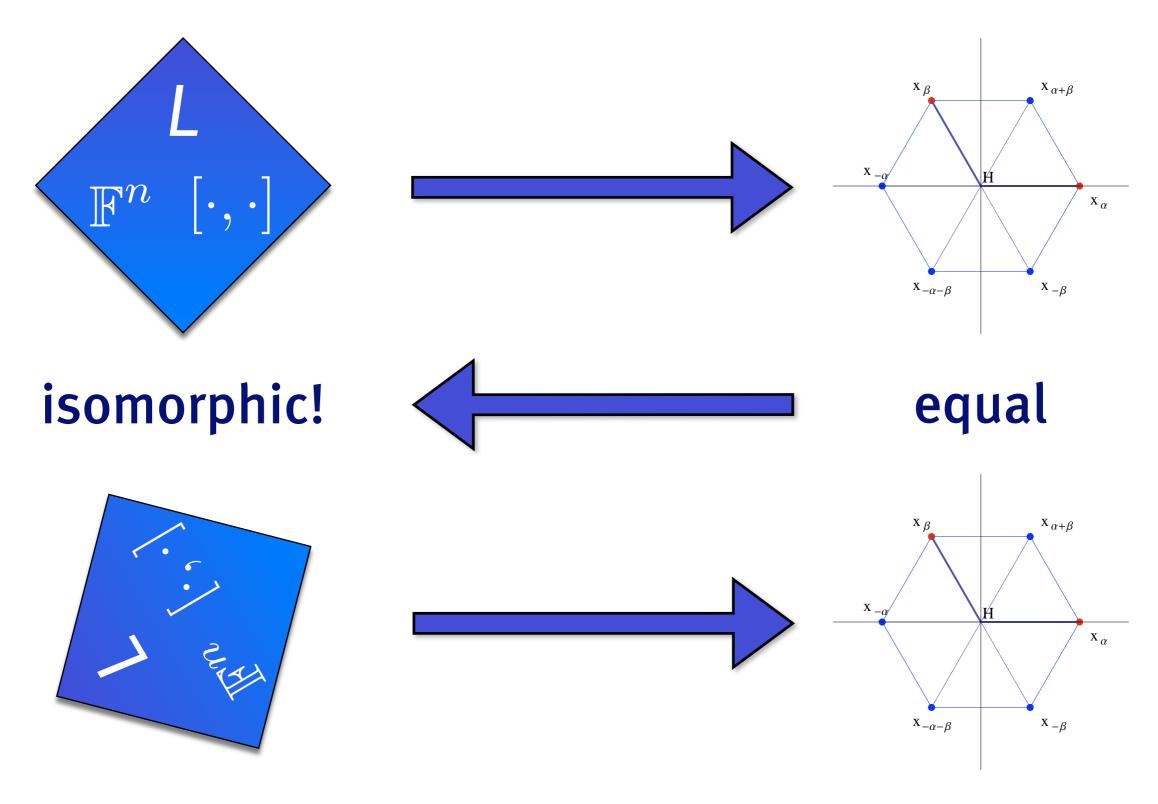


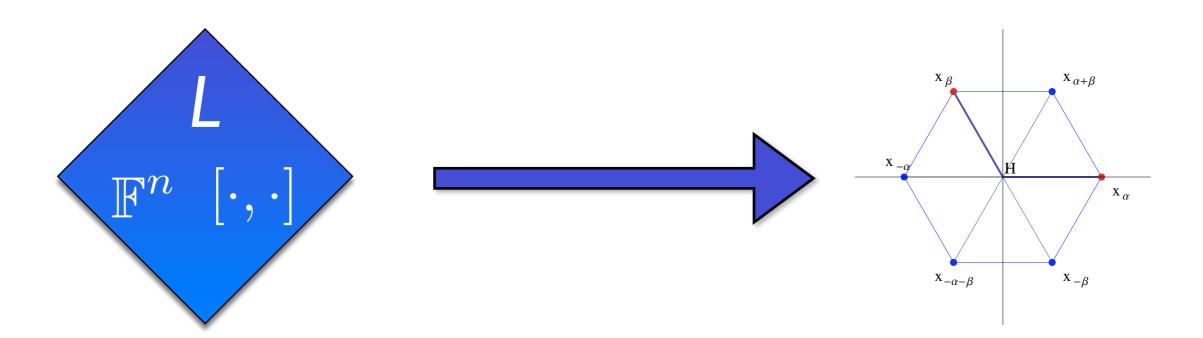


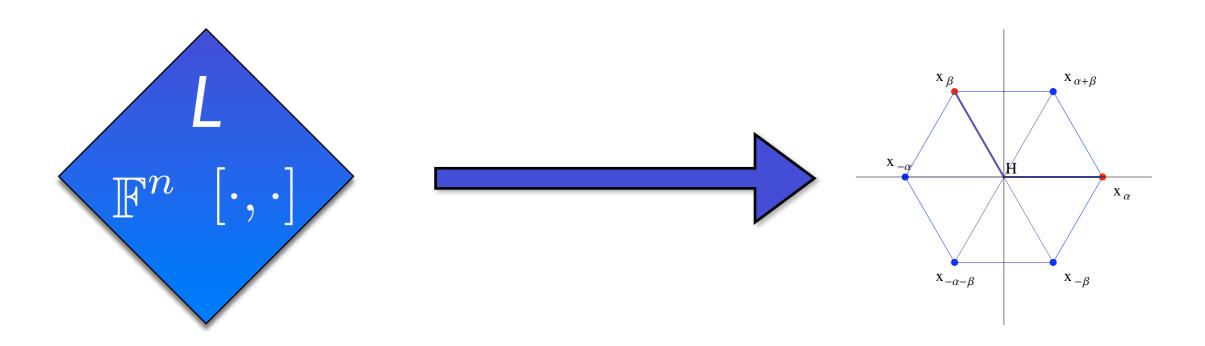


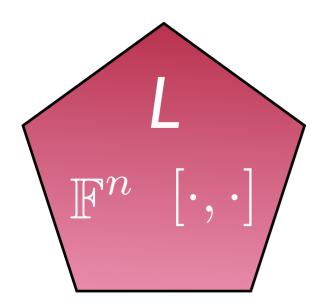


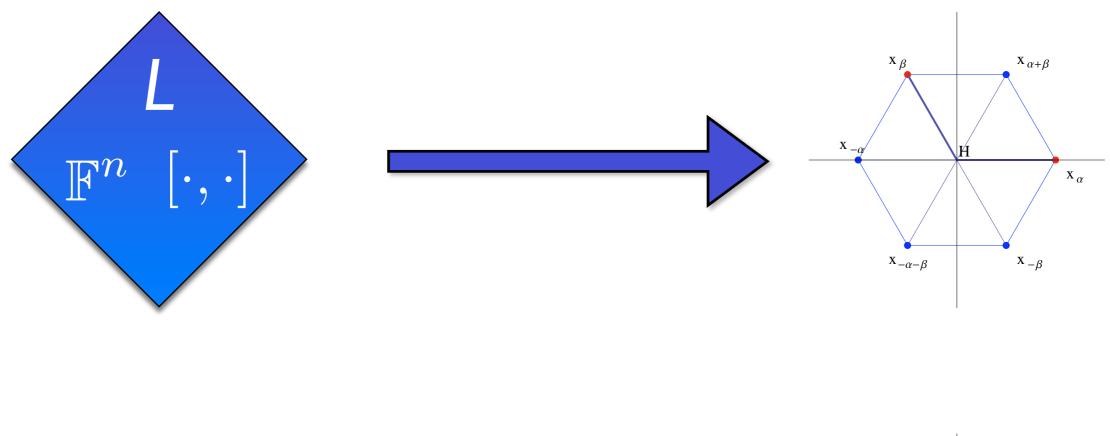


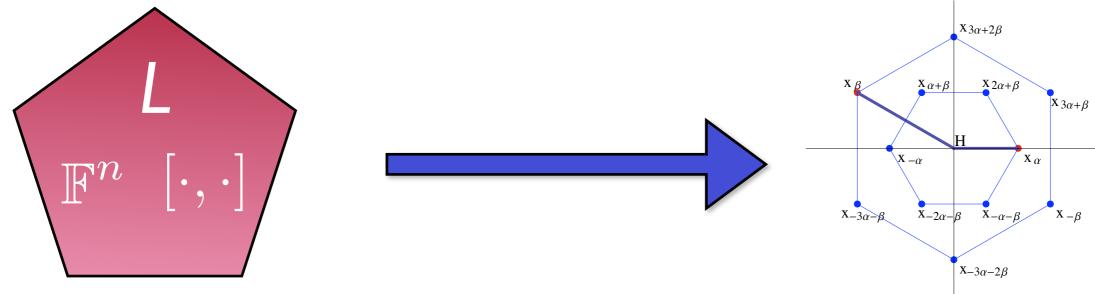


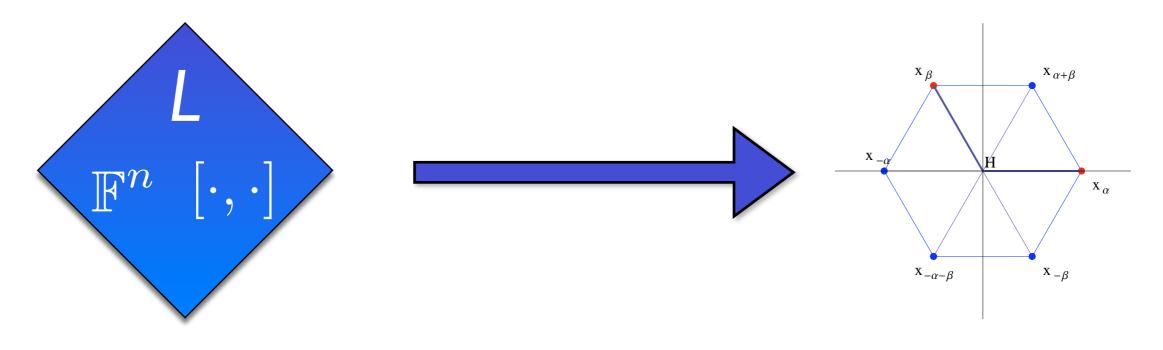




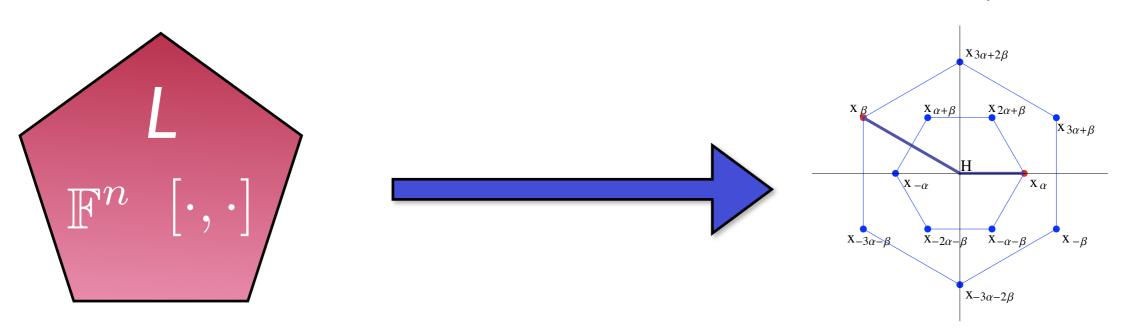


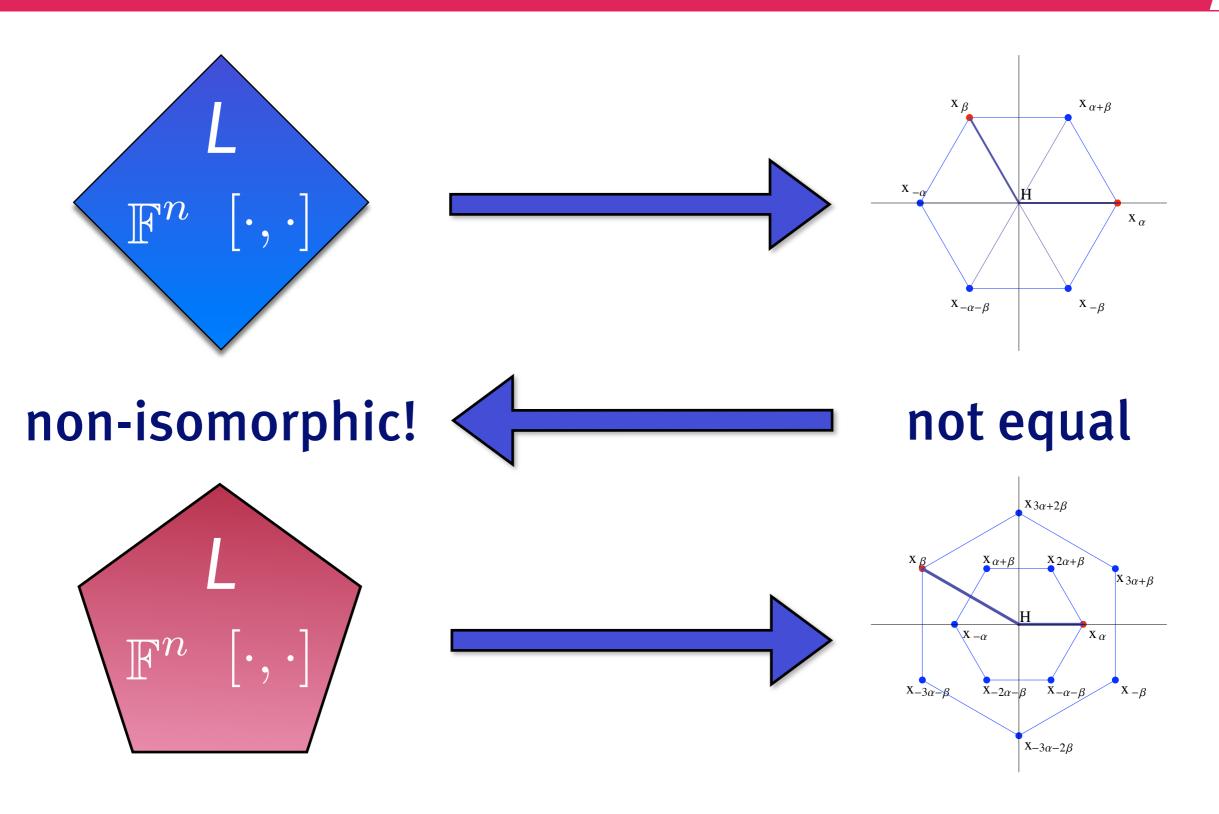






not equal

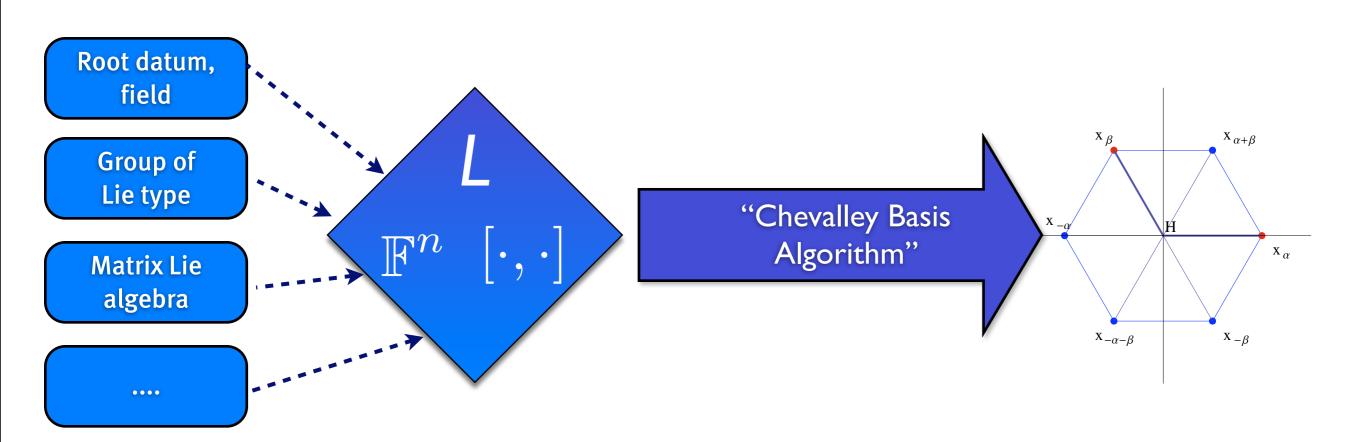


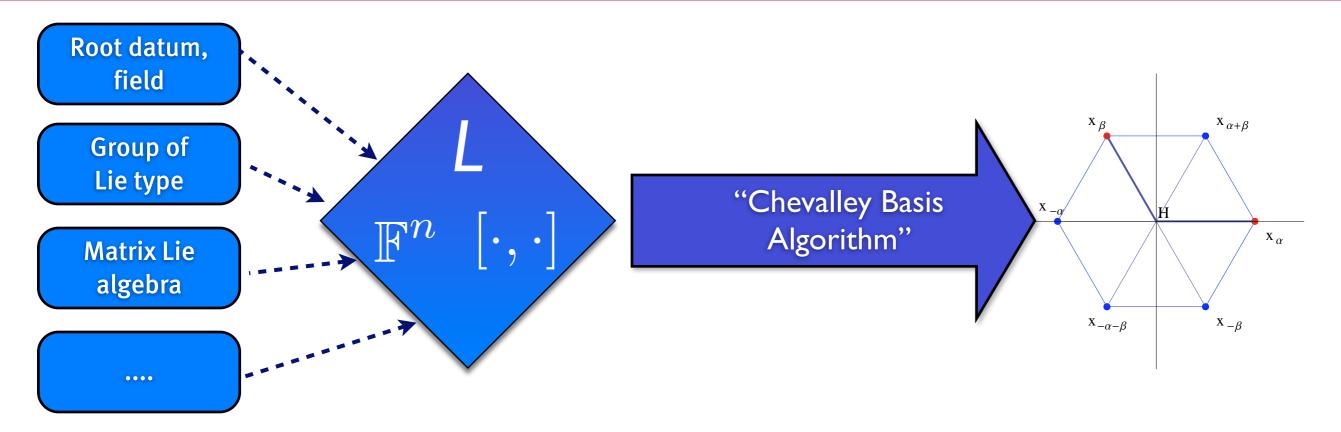


Outline

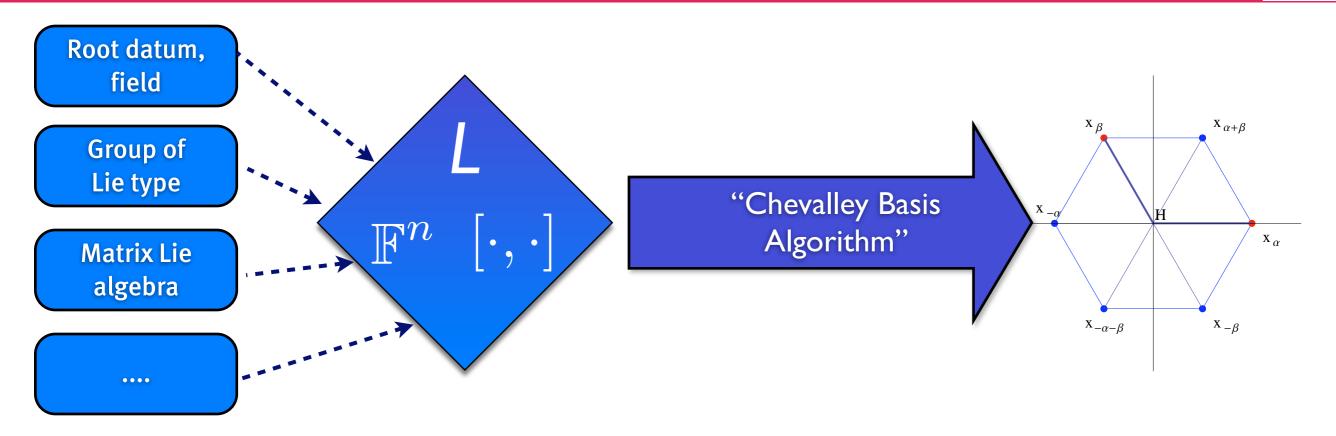
- What is a Lie algebra?
- What is a Chevalley basis?
- How to compute Chevalley bases?
- Does it work?
- What next?

- Given a Lie algebra (on a computer),
- Want to know which Lie algebra it is,
- So want to compute a Chevalley basis for it.

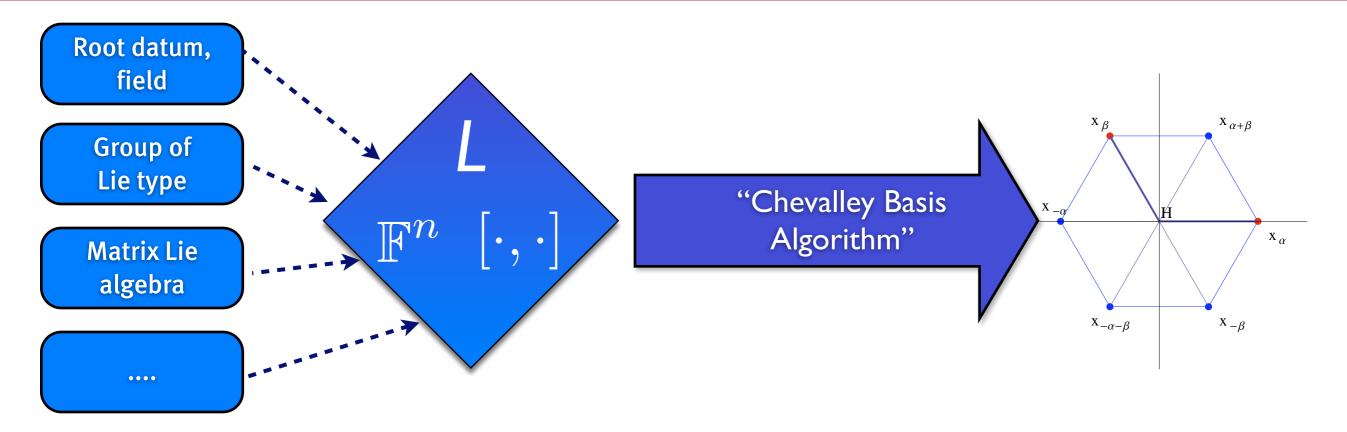




- Assume splitting Cartan subalgebra H is given (Cohen/Murray, indep. Ryba);
- Assume root datum R is given



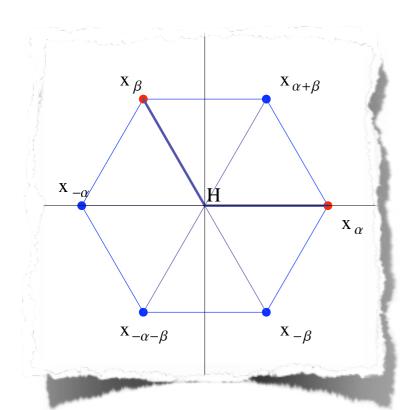
► Char. 0, $p \ge 5$: De Graaf, Murray; implemented in GAP, MAGMA



- ► Char. 0, $p \ge 5$: De Graaf, Murray; implemented in GAP, MAGMA
- ► Char. 2,3: R., 2009, Implemented in MAGMA

Normally:

- Diagonalise L using action of H on L (gives set of x_{α}),
- Use Cartan integers $\langle \alpha, \beta \rangle$ to "identify" the x_{α} ,
- Solve easy linear equations.



$$[h_{i}, h_{j}] = 0,$$

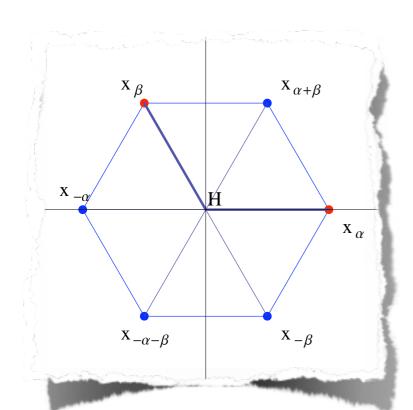
$$[x_{\alpha}, h_{i}] = \langle \alpha, f_{i} \rangle x_{\alpha},$$

$$[x_{-\alpha}, x_{\alpha}] = \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i},$$

$$[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha, \beta} x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Phi, \\ 0 & \text{otherwise,} \end{cases}$$
and the Jacobi identity.

Normally:

- Diagonalise L using action of H on L (gives set of x_{α}),
- Use Cartan integers $\langle \alpha, \beta \rangle$ to "identify" the x_{α} ,
- ✓ ► Solve easy linear equations.



$$[h_{i}, h_{j}] = 0,$$

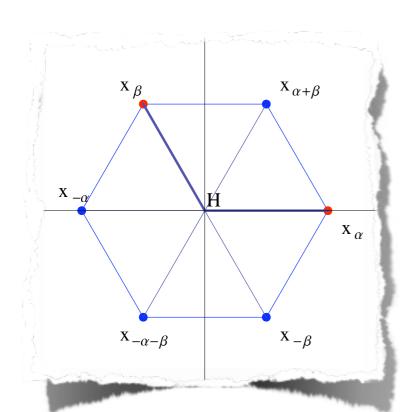
$$[x_{\alpha}, h_{i}] = \langle \alpha, f_{i} \rangle x_{\alpha},$$

$$[x_{-\alpha}, x_{\alpha}] = \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i},$$

$$[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha, \beta} x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Phi, \\ 0 & \text{otherwise,} \end{cases}$$
and the Jacobi identity.

Normally:

- imes Diagonalise L using action of H on L (gives set of x_{α}),
- $m{X}$ $m{\triangleright}$ Use Cartan integers $\langle lpha, eta \rangle$ to "identify" the x_{lpha} ,
- ✓ ► Solve easy linear equations.

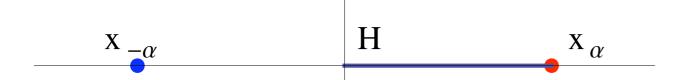


$$[h_{i}, h_{j}] = 0,$$

$$[x_{\alpha}, h_{i}] = \langle \alpha, f_{i} \rangle x_{\alpha},$$

$$[x_{-\alpha}, x_{\alpha}] = \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i},$$

$$[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha, \beta} x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Phi, \\ 0 & \text{otherwise,} \end{cases}$$
and the Jacobi identity.



 $[h_{i}, h_{j}] = 0,$ $[x_{\alpha}, h_{i}] = \langle \alpha, f_{i} \rangle x_{\alpha},$ $[x_{-\alpha}, x_{\alpha}] = \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i},$ $[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha, \beta} x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Phi, \\ 0 & \text{otherwise,} \end{cases}$ and the Jacobi identity.

$$x_{-\alpha}$$
 H x_{α}

$$A_1^{Ad}: X = Y = \mathbb{Z}$$

$$\Phi = \{\alpha = 1, -\alpha = -1\},$$

$$\Phi^{\vee} = \{\alpha^{\vee} = 2, -\alpha^{\vee} = -2\},$$

$$[h_{i}, h_{j}] = 0,$$

$$[x_{\alpha}, h_{i}] = \langle \alpha, f_{i} \rangle x_{\alpha},$$

$$[x_{-\alpha}, x_{\alpha}] = \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i},$$

$$[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha, \beta} x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Phi, \\ 0 & \text{otherwise,} \end{cases}$$
and the Jacobi identity.

$$A_1^{Ad}: X = Y = \mathbb{Z}$$

$$\Phi = \{\alpha = 1, -\alpha = -1\},$$

$$\Phi^{\vee} = \{\alpha^{\vee} = 2, -\alpha^{\vee} = -2\},$$

$$L = \mathbb{F}h \oplus \mathbb{F}x_{\alpha} \oplus \mathbb{F}x_{-\alpha}$$

$$[h_{i}, h_{j}] = 0,$$

$$[x_{\alpha}, h_{i}] = \langle \alpha, f_{i} \rangle x_{\alpha},$$

$$[x_{-\alpha}, x_{\alpha}] = \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i},$$

$$[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha, \beta} x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Phi, \\ 0 & \text{otherwise,} \end{cases}$$
and the Jacobi identity.

$$\mathbf{x}_{-\alpha}$$
 \mathbf{H} \mathbf{x}_{α}

$$A_1^{Ad}: X = Y = \mathbb{Z}$$

$$\Phi = \{\alpha = 1, -\alpha = -1\},$$

$$\Phi^{\vee} = \{\alpha^{\vee} = 2, -\alpha^{\vee} = -2\},$$

$$L = \mathbb{F}h \oplus \mathbb{F}x_{\alpha} \oplus \mathbb{F}x_{-\alpha}$$

$$\begin{array}{c|cccc} & x_{\alpha} & x_{-\alpha} & h \\ \hline x_{\alpha} & 0 & \langle e_{1}, \alpha^{\vee} \rangle h & \langle \alpha, f_{1} \rangle x_{\alpha} \\ x_{-\alpha} & 0 & \langle -\alpha, f_{1} \rangle x_{-\alpha} \\ h & 0 & \end{array}$$

$$[h_{i}, h_{j}] = 0,$$

$$[x_{\alpha}, h_{i}] = \langle \alpha, f_{i} \rangle x_{\alpha},$$

$$[x_{-\alpha}, x_{\alpha}] = \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i},$$

$$[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha, \beta} x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Phi, \\ 0 & \text{otherwise,} \end{cases}$$
and the Jacobi identity.

$$A_1^{Ad}: X = Y = \mathbb{Z}$$

$$\Phi = \{\alpha = 1, -\alpha = -1\},$$

$$\Phi^{\vee} = \{\alpha^{\vee} = 2, -\alpha^{\vee} = -2\},$$

$$L = \mathbb{F}h \oplus \mathbb{F}x_{\alpha} \oplus \mathbb{F}x_{-\alpha}$$

$$[h_{i}, h_{j}] = 0,$$

$$[x_{\alpha}, h_{i}] = \langle \alpha, f_{i} \rangle x_{\alpha},$$

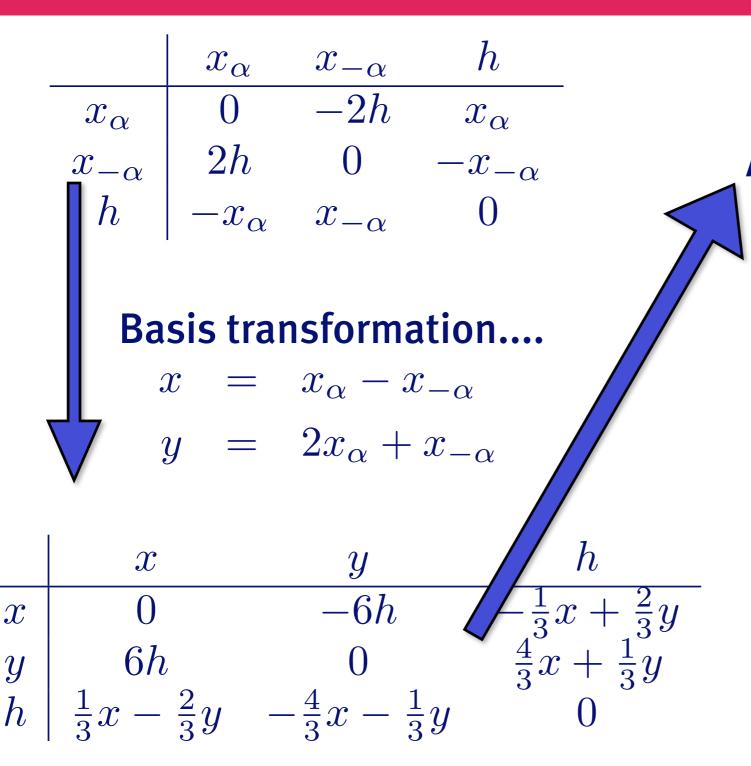
$$[x_{-\alpha}, x_{\alpha}] = \sum_{i=1}^{n} \langle e_{i}, \alpha^{\vee} \rangle h_{i},$$

$$[x_{\alpha}, x_{\beta}] = \begin{cases} N_{\alpha, \beta} x_{\alpha+\beta} & \text{if } \alpha + \beta \in \Phi, \\ 0 & \text{otherwise,} \end{cases}$$
and the Jacobi identity.

	x_{α}	$x_{-\alpha}$	h
$\overline{x_{\alpha}}$	0	-2h	x_{α}
$x_{-\alpha}$	2h	0	$-x_{-\alpha}$
h	$-x_{\alpha}$	$x_{-\alpha}$	0

		$ x_{\alpha} $	$x_{-\alpha}$	h
	x_{α}	0	-2h	x_{α}
/ e	$x_{-\alpha}$	2h	0	$-x_{-\alpha}$
	h	$-x_{\alpha}$	$x_{-\alpha}$	0
	l	I		
	Ba	sis tra	nsforma	ation
		x =	$x_{\alpha}-x_{\alpha}$	c_{-lpha}
7	7	y =	$2x_{\alpha} +$	$x_{-\alpha}$

	x	y	h
\overline{x}	0	-6h	$-\frac{1}{3}x + \frac{2}{3}y$
y	6h	0	$\frac{4}{3}x + \frac{1}{3}y$
h	$\frac{1}{3}x - \frac{2}{3}y$	$-\frac{4}{3}x - \frac{1}{3}y$	0



Algorithm:

- Diagonalize L wrt H
- Find 1-dim eigenspaces:

$$S_1, S_{-1}, S_0$$

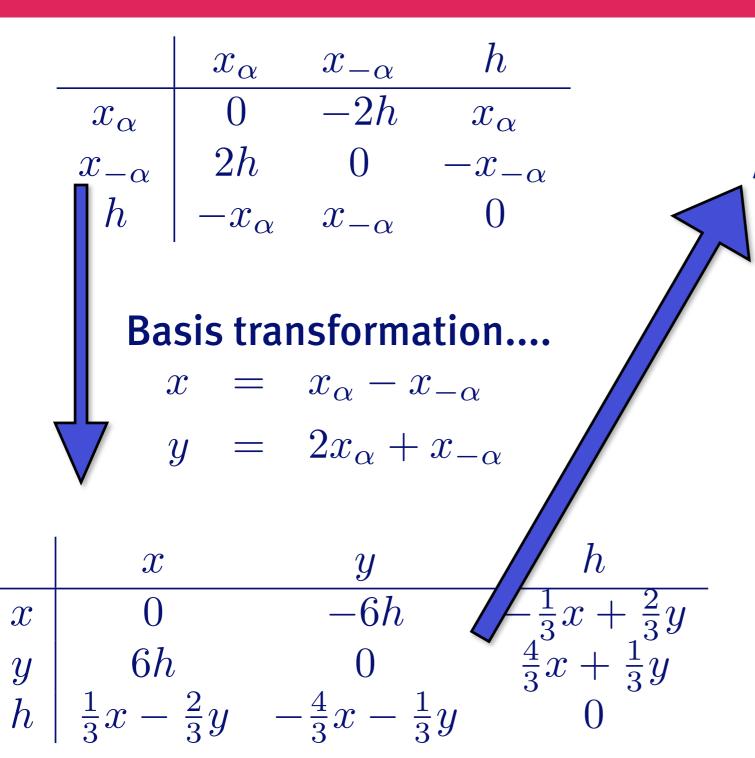
Take

$$x + y \in S_1$$

$$x - \frac{1}{2}y \in S_{-1}$$

$$h \in S_0$$

Done!



Algorithm:

- Diagonalize L wrt H
- Find 1-dim eigenspaces:

$$S_1, S_{-1}, S_0$$

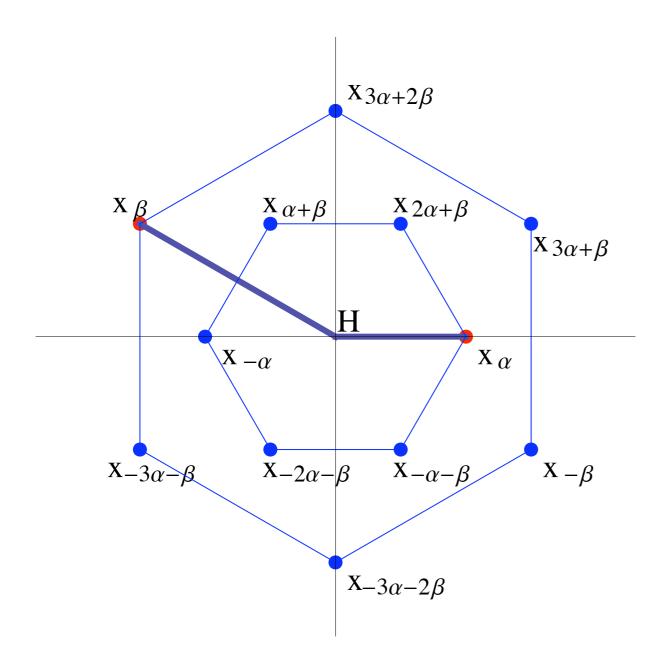
Take

$$x + y \in S_1$$

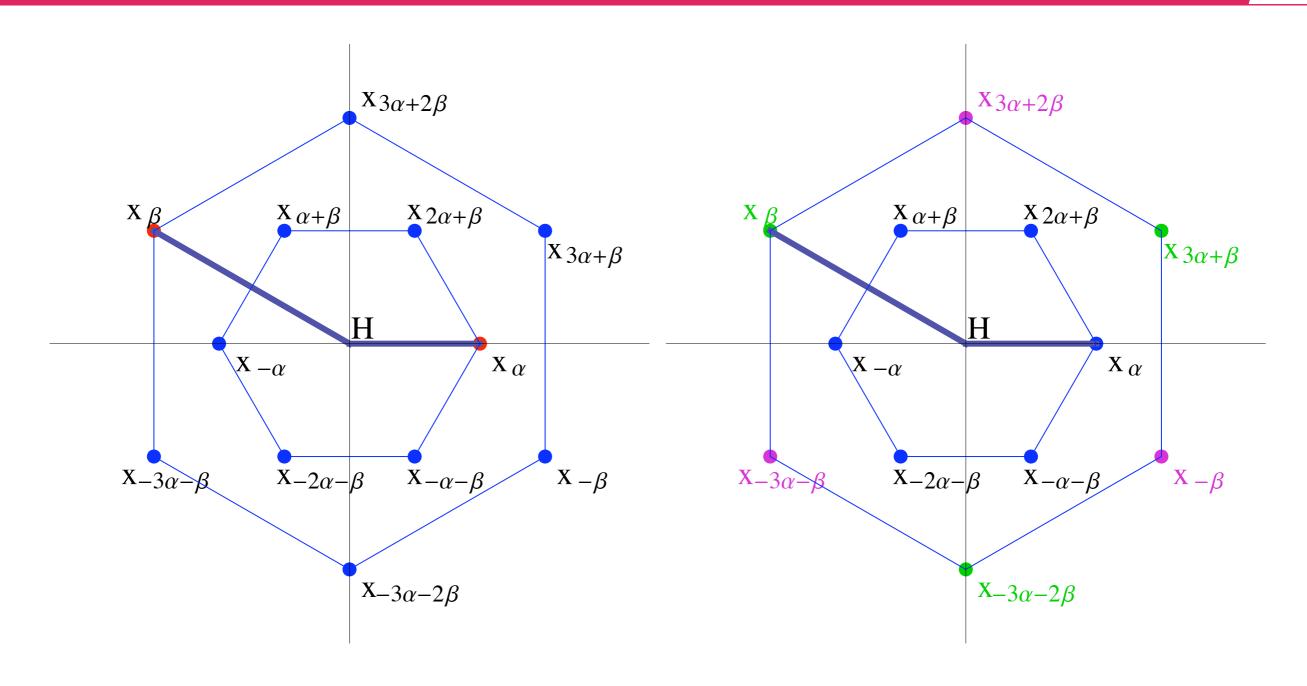
$$x - \frac{1}{2}y \in S_{-1}$$

$$h \in S_0$$

- Done!
- ▶ But if char. is 2...



char. not 3



char. not 3

char. 3

R(p)	Mults	Soln	R(p)	Mults	Soln
$A_2^{sc}(3)$	3^2	[Der]	$C_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2n, 2^{n(n-1)}$	[C]
$G_2(3)$	$1^6, 3^2$	[C]	$C_n^{sc}(2) \ (n \ge 3)$	$\mathbf{2n},4^{\binom{n}{2}}$	$[\mathrm{B_2}^{\mathrm{sc}}]$
$A_3^{sc,(2)}(2)$	4^3	[Der]	$D_4^{(1),(n-1),(n)}(2)$	4^6	[Der]
$\mathrm{B_2}^{\mathrm{ad}}(2)$	$2^{2}, 4$	[C]	$\mathrm{D_4^{sc}(2)}$	8^3	[Der]
$B_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2^n,4^{\binom{n}{2}}$	[C]	$D_n^{(1)}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$\mathrm{B_2^{sc}}(2)$	4 , 4	$[\mathrm{B_2}^\mathrm{sc}]$	$D_n^{sc}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$\mathrm{B_3^{sc}(2)}$	6^3	[Der]	$\mathrm{F}_4(2)$	$2^{12}, 8^3$	[C]
$\mathrm{B_4^{sc}(2)}$	$2^4, 8^3$	[Der]	$G_2(2)$	4^3	[Der]
$B_n^{sc}(2) \ (n \ge 5)$	$2^n, 4^{\binom{n}{2}}$	[C]	all $remaining(2)$	$2^{ \Phi^+ }$	$[A_2]$

Table 1. Multidimensional root spaces

R(p)	Mults	Soln	R(p)	Mults	Soln
$A_2^{sc}(3)$	3^2	[Der]	$C_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2n, 2^{n(n-1)}$	[C]
$G_2(3)$	$1^6,3^2$	[C]	$C_n^{sc}(2) \ (n \ge 3)$	$\mathbf{2n},4^{\binom{n}{2}}$	$[\mathrm{B_2}^{\mathrm{sc}}]$
$A_3^{\mathrm{sc},(2)}(2)$	4^3	[Der]	$D_4^{(1),(n-1),(n)}(2)$	4^6	[Der]
$\mathrm{B_2}^{\mathrm{ad}}(2)$	$2^{2}, 4$	[C]	$\mathrm{D_4^{sc}(2)}$	8^3	[Der]
$B_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2^n,4^{\binom{n}{2}}$	[C]	$D_n^{(1)}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$\mathrm{B_2^{sc}}(2)$	4 ,4	$[\mathrm{B_2}^{\mathrm{sc}}]$	$D_n^{sc}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$\mathrm{B_3^{sc}}(2)$	6^3	[Der]	$F_4(2)$	$2^{12}, 8^3$	[C]
$\mathrm{B_4^{sc}}(2)$	$2^4, 8^3$	[Der]	$G_2(2)$	4^3	[Der]
$B_n^{sc}(2) \ (n \ge 5)$	$2^n,4^{\binom{n}{2}}$	[C]	all remaining(2)	$2^{ \Phi^+ }$	$[A_2]$

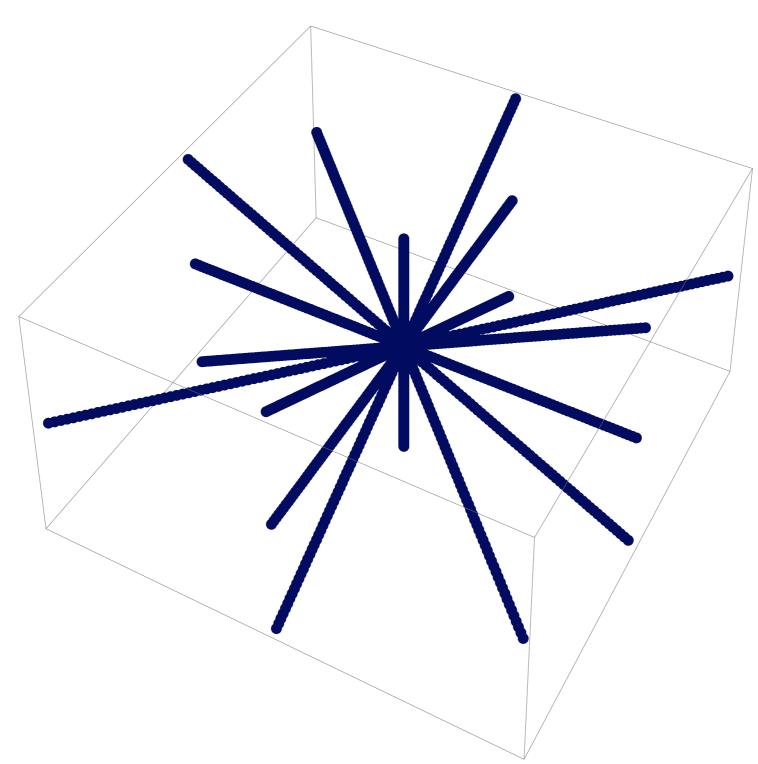
Table 1. Multidimensional root spaces

R(p)	Mults	Soln	R(p)	Mults	Soln
$A_2^{sc}(3)$	3^2	[Der]	$C_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2n, 2^{n(n-1)}$	[C]
$G_2(3)$	$1^6, 3^2$	[C]	$C_n^{sc}(2) \ (n \ge 3)$	$\mathbf{2n},4^{\binom{n}{2}}$	$[\mathrm{B_2}^{\mathrm{sc}}]$
$\mathrm{A}_3^{\mathrm{sc},(2)}(2)$	4^3	[Der]	$D_4^{(1),(n-1),(n)}(2)$	4^6	[Der]
$\mathrm{B_2}^{\mathrm{ad}}(2)$	$2^{2}, 4$	[C]	$\mathrm{D_4^{sc}(2)}$	8^3	[Der]
$B_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2^n,4^{\binom{n}{2}}$	[C]	$D_n^{(1)}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$\mathrm{B_2^{sc}}(2)$	4 , 4	$[\mathrm{B_2}^{\mathrm{sc}}]$	$D_n^{sc}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$\mathrm{B_3^{sc}(2)}$	6^3	[Der]	$F_4(2)$	$2^{12}, 8^3$	[C]
$\mathrm{B_4^{sc}(2)}$	$2^4, 8^3$	[Der]	$G_2(2)$	4^3	[Der]
$B_n^{sc}(2) \ (n \ge 5)$	$2^n,4^{\binom{n}{2}}$	[C]	all $remaining(2)$	$2^{ \Phi^+ }$	$[A_2]$

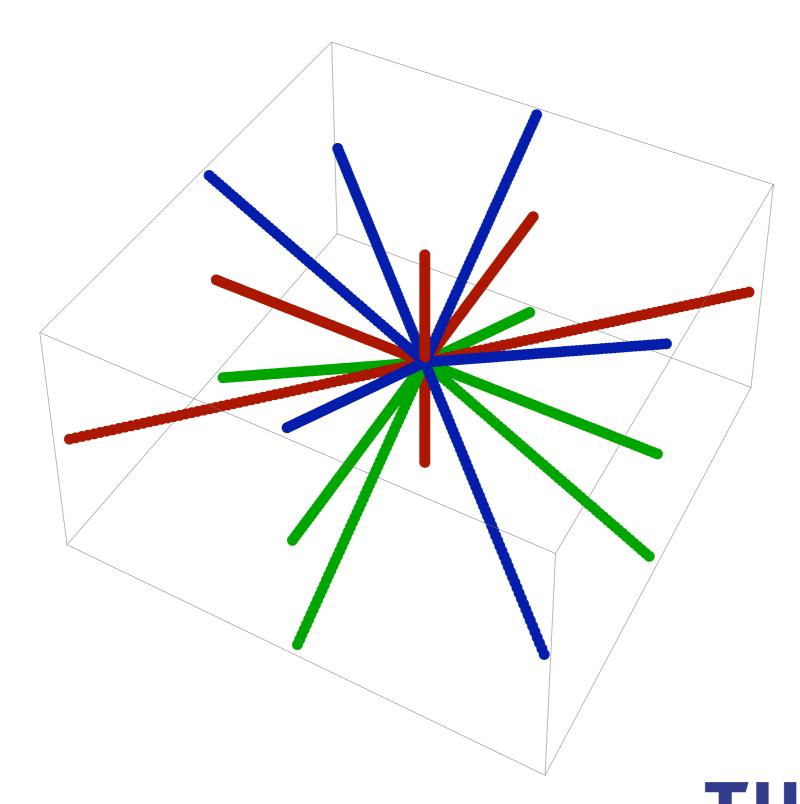
Table 1. Multidimensional root spaces

R(p)	Mults	Soln	R(p)	Mults	Soln
$A_2^{\rm sc}(3)$	3^2	[Der]	$C_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2n, 2^{n(n-1)}$	[C]
$G_2(3)$	$1^6, 3^2$	[C]	$C_n^{sc}(2) \ (n \ge 3)$	$\mathbf{2n},4^{\binom{n}{2}}$	$[\mathrm{B_2}^\mathrm{sc}]$
$\mathrm{A}_3^{\mathrm{sc},(2)}(2)$	4^3	[Der]	$D_4^{(1),(n-1),(n)}(2)$	4^6	[Der]
$\mathrm{B_2}^{\mathrm{ad}}(2)$	$2^2, 4$	[C]	$\mathrm{D_4^{sc}(2)}$	8^3	[Der]
$B_n^{\mathrm{ad}}(2) \ (n \ge 3)$	$2^n, 4^{\binom{n}{2}}$	[C]	$D_n^{(1)}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$\mathrm{B_2^{sc}(2)}$	4 , 4	$[\mathrm{B_2}^\mathrm{sc}]$	$D_n^{sc}(2) \ (n \ge 5)$	$4^{\binom{n}{2}}$	[Der]
$\mathrm{B_3^{sc}(2)}$	6^3	[Der]	$F_4(2)$	$2^{12}, 8^3$	[C]
$\mathrm{B_4^{sc}(2)}$	$2^4, 8^3$	[Der]	$G_2(2)$	4^3	[Der]
$B_n^{sc}(2) \ (n \ge 5)$	$2^n, 4^{\binom{n}{2}}$	[C]	all $remaining(2)$	$2^{ \Phi^+ }$	$[A_2]$

Table 1. Multidimensional root spaces

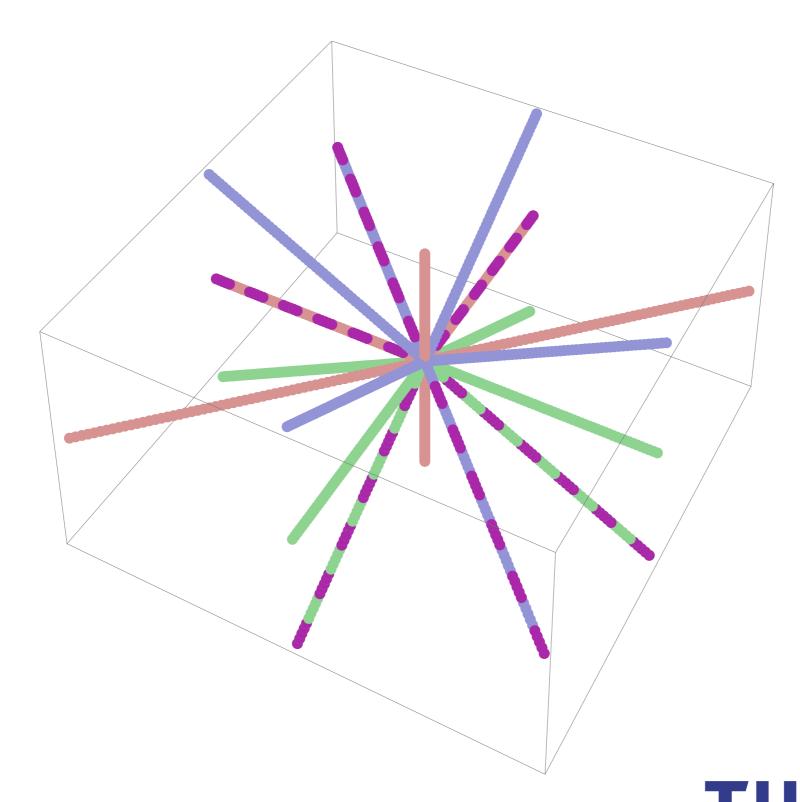


Technische Universiteit
Eindhoven
University of Technology

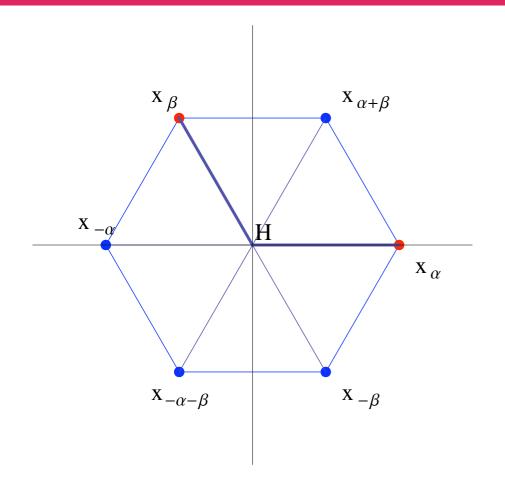


Technische Universiteit
Eindhoven
University of Technology

Diagonalising (B3, char. 2)

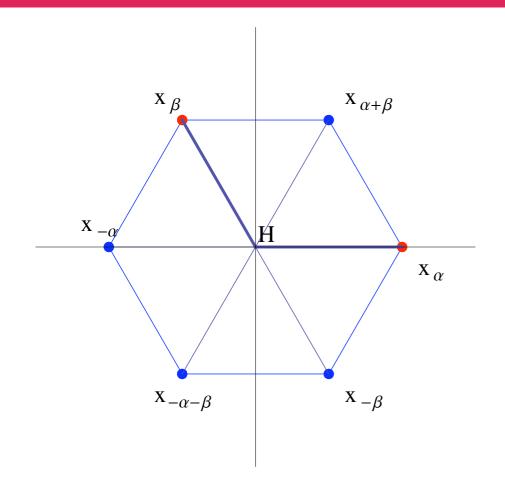


Diagonalising (A2, char. 3)



Type	Eigenspaces	Composition
Ad	(2,) 16	<u>1</u> 7
SC	(2,) 3 ²	<u>7</u> 1

Diagonalising (A2, char. 3)



Туре	Eigenspaces	Composition
Ad	(2,) 1 ⁶	<u>1</u> 7
SC	(2,) 3 ²	<u>7</u> 1

Observations:

- ▶ There is only one "7",
- \rightarrow Der(LSC) = LAd.

Outline

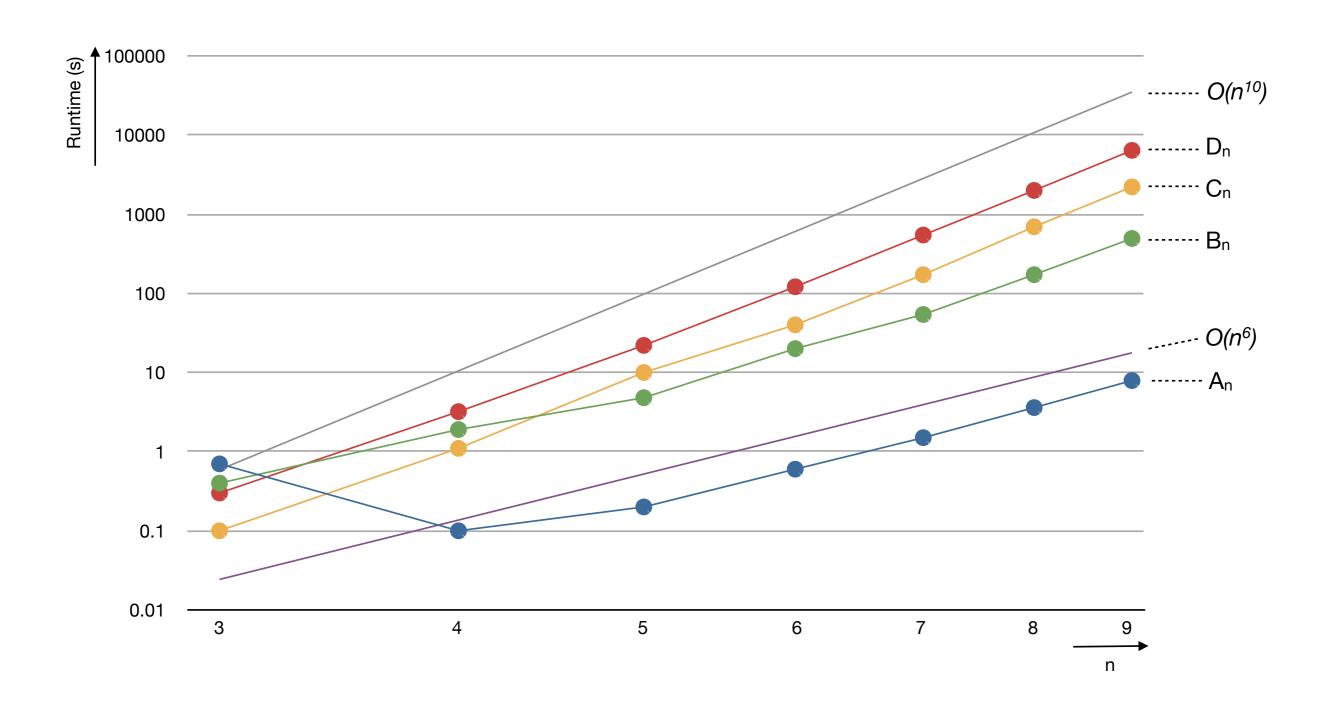
- What is a Lie algebra?
- What is a Chevalley basis?
- How to compute Chevalley bases?
- Does it work?
- What next?

A tiny demo: A₃ / sl₄

A tiny demo: A₃ / sl₄

```
danroozemond@dyn183 ~ $ magma-exp
Magma V2.15-9 Wed May 13 2009 10:38:45 on dyn183 [Seed = 2715905262]
Type ? for help. Type <Ctrl>-D to quit.
Loading startup file "/Users/danroozemond/.magmarc"
======Warning! 1500 M memory limit active.=====
[~/tue/research/cb/magma-pkg/all.spec attached]
> //Construct sl 4 over the rationals
> Q := Rationals();
> gl4Q := MatrixLieAlgebra(Q, 4);
> Dimension(gl4Q);
16
> s14Q := sub<g14
```

A graph



- Main challenges for computing Chevalley bases in small characteristic:
 - Multidimensional eigenspaces,

- Main challenges for computing Chevalley bases in small characteristic:
 - Multidimensional eigenspaces,
 - Broken root chains;

- Main challenges for computing Chevalley bases in small characteristic:
 - Multidimensional eigenspaces,
 - Broken root chains;
- Found solutions for all cases,
 - and implemented these in MAGMA;

- Main challenges for computing Chevalley bases in small characteristic:
 - Multidimensional eigenspaces,
 - Broken root chains;
- Found solutions for all cases,
 - and implemented these in MAGMA;
- ► To do:
 - Compute split Cartan subalgebras in small characteristic;

- Main challenges for computing Chevalley bases in small characteristic:
 - Multidimensional eigenspaces,
 - Broken root chains;
- Found solutions for all cases,
 - and implemented these in MAGMA;
- To do:
 - Compute split Cartan subalgebras in small characteristic;
- Bigger picture:
 - Recognition of groups or Lie algebras,
 - Finding conjugators for Lie group elements,
 - Finding automorphisms of Lie algebras,
 - •

Outline

- What is a Lie algebra?
- What is a Chevalley basis?
- How to compute Chevalley bases?
- Does it work?
- What next?

Any questions?

