Construction of Chevalley Bases of Lie Algebras

Dan Roozemond Joint work with Arjeh M. Cohen

December 3rd, 2008, EIDMA Combinatorial Seminar, Eindhoven University of Technology
http://www.win.tue.nl/~droozemo/ (or Google)

Outline

1. Why study Lie algebras?
2. Defining Lie algebras

- Root system
- Root datum
- Lie algebra

3. Examples

- A_{1}, B_{2}, G_{2}
- A_{2}

4. Computing Chevalley Bases

- Why?
- How?
- Strange things in small characteristic
- Solving these things

5. Conclusion, Future research

Why Study Lie Algebras?

- Study groups by Lie algebras:
- Simple algebraic group $G \leftrightarrow$ Unique Lie algebra L
- Many properties carry over to L
- Easier to calculate in L
- $G \leq \operatorname{Aut}(L)$, often even $G=\operatorname{Aut}(L)$
- Opportunities for:
- Recognition
- Conjugation
- Because there are problems to be solved!
... and a thesis to be written ...

Why Study Lie Algebras?

- Study groups by Lie algebras:
- Simple algebraic group $G \leftrightarrow$ Unique Lie algebra L
- Many properties carry over to L
- Easier to calculate in L
- $G \leq \operatorname{Aut}(L)$, often even $G=\operatorname{Aut}(L)$
- Opportunities for:
- Recognition
- Conjugation
- Because there are problems to be solved!
... and a thesis to be written ...

Why Study Lie Algebras?

- Study groups by Lie algebras:
- Simple algebraic group $G \leftrightarrow$ Unique Lie algebra L
- Many properties carry over to L
- Easier to calculate in L
- $G \leq \operatorname{Aut}(L)$, often even $G=\operatorname{Aut}(L)$
- Opportunities for:
- Recognition
- Conjugation
- ...
- Because there are problems to be solved!
\ldots and a thesis to be written ...

Why Study Lie Algebras?

- Study groups by Lie algebras:
- Simple algebraic group $G \leftrightarrow$ Unique Lie algebra L
- Many properties carry over to L
- Easier to calculate in L
- $G \leq \operatorname{Aut}(L)$, often even $G=\operatorname{Aut}(L)$
- Opportunities for:
- Recognition
- Conjugation
- ...
- Because there are problems to be solved!
... and a thesis to be written ...

Root Systems

/ department of mathematics and computer science

Root Systems

/ department of mathematics and computer science

Root Systems

- A hexagon
- A root system of type A_{2}
- A Lie algebra of type A_{2}

Root Systems

Root Data

Definition (Root Datum)

$$
R=\left(X, \Phi, Y, \Phi^{\vee}\right), \quad\langle\cdot, \cdot\rangle: X \times Y \rightarrow \mathbb{Z}
$$

- X, Y : dual free \mathbb{Z}-modules,
- put in duality by $\langle\cdot, \cdot\rangle$,
- $\Phi \subseteq X$: roots,
- $\Phi^{\vee} \subseteq Y$: coroots.

One Root System \rightarrow

/ department of mathematics and computer science

Several Root Data: "adjoint"

Root Data

Definition (Root Datum)

$$
R=\left(X, \Phi, Y, \Phi^{\vee}\right), \quad\langle\cdot, \cdot\rangle: X \times Y \rightarrow \mathbb{Z}
$$

- X, Y : dual free \mathbb{Z}-modules,
- put in duality by $\langle\cdot, \cdot\rangle$,
- $\Phi \subseteq X$: roots,
- $\Phi^{\vee} \subseteq Y$: coroots.

Lie Algebras

- A hexagon
- A root system of type A_{2}
- A Lie algebra of type A_{2}

Lie Algebras

- A hexagon
- A root system of type A_{2}
- A Lie algebra of type A_{2}

Lie Algebras

Definition (Chevalley Lie Algebra)

$$
\text { Formal basis : } L_{\mathbb{Z}}=\bigoplus_{i=1, \ldots, n} \mathbb{Z} h_{i} \oplus \bigoplus_{a \in \Phi} \mathbb{Z} x_{\alpha},
$$

Multiplication : [., .]
with bilinear antisymmetric multiplication defined by

Such a basis: a Chevalley basis. $N_{\alpha, \beta}= \pm(k+1)$

Lie Algebras

Definition (Chevalley Lie Algebra)

$$
\text { Formal basis : } L_{\mathbb{Z}}=\bigoplus_{i=1, \ldots, n} \mathbb{Z} h_{i} \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha}
$$

Multiplication : [[, •]

with bilinear antisymmetric multiplication defined by

- $h_{i}, h_{j} \in H:$

$$
\begin{array}{lll}
& h_{i}, h_{j} \in H: & {\left[h_{i}, h_{j}\right]=0,} \\
& h_{i} \in H, \alpha \in \Phi: & {\left[x_{\alpha}, h_{i}\right]=\left\langle\alpha, f_{i}\right\rangle X_{\alpha},} \\
& \alpha \in \Phi: & {\left[x_{-\alpha}, x_{\alpha}\right]=\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i},} \\
& \alpha, \beta \in \Phi: & {\left[x_{\alpha}, x_{\beta}\right]= \begin{cases}N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi, \\
0 & \text { otherwise. }\end{cases} }
\end{array}
$$

$$
h_{i} \in H, \alpha \in \Phi:
$$

$$
\nabla \alpha \in \Phi:
$$

- + Jacobi identity: $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$.

Such a basis: a Chevalley basis. $N_{\alpha, \beta}= \pm(k+1)$

Lie Algebras

Definition (Chevalley Lie Algebra)

$$
\text { Formal basis : } L_{\mathbb{Z}}=\bigoplus_{i=1, \ldots, n} \mathbb{Z} h_{i} \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha}
$$

Multiplication : [[, •]

with bilinear antisymmetric multiplication defined by

- $h_{i}, h_{j} \in H:$

$$
\begin{array}{lll}
> & h_{i}, h_{j} \in H: & {\left[h_{i}, h_{j}\right]=0,} \\
& h_{i} \in H, \alpha \in \Phi: & {\left[x_{\alpha}, h_{i}\right]=\left\langle\alpha, f_{i}\right\rangle X_{\alpha},} \\
> & \alpha \in \Phi: & {\left[x_{-\alpha}, x_{\alpha}\right]=\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i},} \\
& \alpha, \beta \in \Phi: & {\left[x_{\alpha}, x_{\beta}\right]= \begin{cases}N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi, \\
0 & \text { otherwise. }\end{cases} }
\end{array}
$$

$$
h_{i} \in H, \alpha \in \Phi:
$$

$$
\nabla \alpha \in \Phi:
$$

- + Jacobi identity: $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$.

Such a basis: a Chevalley basis. $N_{\alpha, \beta}= \pm(k+1)$

Lie Algebras

- + Jacobi identity: $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$.

Such a basis: a Chevalley basis. $N_{\alpha, \beta}= \pm(k+1)$

Chevalley Bases

Definition (Chevalley Lie Algebra)

$$
\text { Formal basis: } L_{\mathbb{Z}}=\bigoplus_{i=1, \ldots, n} \mathbb{Z} h_{i} \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha},
$$

Multiplication : [.,.]
$L_{\mathbb{F}}=L_{\mathbb{Z}} \otimes \mathbb{F}$ gives a Lie algebra over \mathbb{F}.

Outline

1. Why study Lie algebras?
2. Defining Lie algebras

- Root system
- Root datum
- Lie algebra

3. Examples

- A_{1}, B_{2}, G_{2}
- A_{2}

4. Computing Chevalley Bases

- Why?
- How?
- Strange things in small characteristic
- Solving these things

5. Conclusion, Future research

Example: $\mathfrak{s l}_{2} / \mathrm{A}_{1}$

$\mathfrak{s l}_{2}$: Trace 0 matrices.

$$
\begin{gathered}
e=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \\
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{gathered}
$$

$[a, b]:=a b-b a$

Example: $\mathfrak{s l}_{2} / \mathrm{A}_{1}$

$\mathfrak{s l}_{2}$: Trace 0 matrices.

$$
\begin{gathered}
e=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \\
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{gathered}
$$

$$
[a, b]:=a b-b a
$$

	e	f	h
e	0	$-h$	$2 e$
f	h	0	$-2 f$
h	$-2 e$	$2 f$	0

Example: $\mathfrak{s l}_{2} / \mathrm{A}_{1}$

$\mathfrak{s l}_{2}$: Trace 0 matrices.

$$
\begin{gathered}
e=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \\
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{gathered}
$$

$$
[a, b]:=a b-b a
$$

	e	f	h
e	0	$-h$	$2 e$
f	h	0	$-2 f$
h	$-2 e$	$2 f$	0

$$
\begin{gathered}
\mathrm{A}_{1}{ }^{\text {sc}}: X=Y=\mathbb{Z}, \\
\Phi=\{\alpha=2,-\alpha=-2\}, \\
\Phi^{\vee}=\left\{\alpha^{\vee}=1,-\alpha^{\vee}=-1\right\},
\end{gathered}
$$

Example: $\mathfrak{s l}_{2} / \mathrm{A}_{1}$

$\mathfrak{s l}_{2}$: Trace 0 matrices.

$$
\begin{gathered}
e=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \\
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{gathered}
$$

$$
[a, b]:=a b-b a
$$

	e	f	h
e	0	$-h$	$2 e$
f	h	0	$-2 f$
h	$-2 e$	$2 f$	0

$$
\begin{gathered}
\mathrm{A}_{1}^{\text {sc }: ~}: X=Y=\mathbb{Z}, \\
\Phi=\{\alpha=2,-\alpha=-2\}, \\
\Phi^{\vee}=\left\{\alpha^{\vee}=1,-\alpha^{\vee}=-1\right\},
\end{gathered}
$$

$$
L_{\mathbb{Z}}=H \oplus \oplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha}
$$

$$
=\mathbb{Z} h \oplus \mathbb{Z} x_{\alpha} \oplus \mathbb{Z} X_{-\alpha},
$$

Example: $\mathfrak{s l}_{2} / \mathrm{A}_{1}$

$\mathfrak{s l}_{2}$: Trace 0 matrices.

$$
\begin{gathered}
e=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \\
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
\end{gathered}
$$

$$
[a, b]:=a b-b a
$$

	e	f	h
e	0	$-h$	$2 e$
f	h	0	$-2 f$
h	$-2 e$	$2 f$	0

$$
\begin{gathered}
\mathrm{A}_{1}^{\text {sc }: X=Y=\mathbb{Z},} \\
\Phi=\{\alpha=2,-\alpha=-2\}, \\
\Phi^{\vee}=\left\{\alpha^{\vee}=1,-\alpha^{\vee}=-1\right\},
\end{gathered}
$$

$$
L_{\mathbb{Z}}=H \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha}
$$

$$
=\mathbb{Z} h \oplus \mathbb{Z} X_{\alpha} \oplus \mathbb{Z} X_{-\alpha},
$$

	x_{α}	$x_{-\alpha}$	h
x_{α}	0	$-h$	$2 x_{\alpha}$
$x_{-\alpha}$	h	0	$-2 x_{-\alpha}$
h	$-2 x_{\alpha}$	$2 x_{-\alpha}$	0

Example: $A_{1}{ }^{\text {sc }} / \mathrm{A}_{1}{ }^{\text {ad }}$

$$
\begin{gathered}
\mathrm{A}_{1}{ }^{\mathrm{sc}}: X=Y=\mathbb{Z}, \\
\Phi=\{\alpha=2,-\alpha=-2\}, \\
\Phi^{\vee}=\left\{\alpha^{\vee}=1,-\alpha^{\vee}=-1\right\},
\end{gathered}
$$

$$
L_{\mathbb{Z}}=H \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha}
$$

$$
=\mathbb{Z} h \oplus \mathbb{Z} x_{\alpha} \oplus \mathbb{Z} x_{-\alpha},
$$

	x_{α}	$x_{-\alpha}$	h
x_{α}	0	$-h$	$2 x_{\alpha}$
$x_{-\alpha}$	h	0	$-2 x_{-\alpha}$
h	$-2 x_{\alpha}$	$2 x_{-\alpha}$	0

Example: $\mathrm{A}_{1}{ }^{\text {sc }} / \mathrm{A}_{1}{ }^{\text {ad }}$

$$
\begin{gathered}
\mathrm{A}_{1}{ }^{\mathrm{sc}}: X=Y=\mathbb{Z}, \\
\Phi=\{\alpha=2,-\alpha=-2\}, \\
\Phi^{\vee}=\left\{\alpha^{\vee}=1,-\alpha^{\vee}=-1\right\},
\end{gathered}
$$

$$
L_{\mathbb{Z}}=H \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha}
$$

$$
=\mathbb{Z} h \oplus \mathbb{Z} x_{\alpha} \oplus \mathbb{Z} x_{-\alpha},
$$

	x_{α}	$x_{-\alpha}$	h
x_{α}	0	$-h$	$2 x_{\alpha}$
$x_{-\alpha}$	h	0	$-2 x_{-\alpha}$
h	$-2 x_{\alpha}$	$2 x_{-\alpha}$	0

Example: $A_{1}{ }^{\text {sc }} / A_{1}{ }^{\text {ad }}$

$$
\begin{gathered}
\mathrm{A}_{1}{ }^{\mathrm{sc}}: X=Y=\mathbb{Z}, \\
\Phi=\{\alpha=2,-\alpha=-2\}, \\
\Phi^{\vee}=\left\{\alpha^{\vee}=1,-\alpha^{\vee}=-1\right\},
\end{gathered}
$$

$$
L_{\mathbb{Z}}=H \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha}
$$

$$
=\mathbb{Z} h \oplus \mathbb{Z} x_{\alpha} \oplus \mathbb{Z} \mathbf{x}_{-\alpha}
$$

	x_{α}	$x_{-\alpha}$	h
x_{α}	0	$-h$	$2 x_{\alpha}$
$x_{-\alpha}$	h	0	$-2 x_{-\alpha}$
h	$-2 x_{\alpha}$	$2 x_{-\alpha}$	0

Example: $A_{1}{ }^{\text {sc }} / A_{1}{ }^{\text {ad }}$

$\mathrm{A}_{1}{ }^{\text {sc }}: X=Y=\mathbb{Z}$,
$\Phi=\{\alpha=2,-\alpha=-2\}$,

$$
\Phi^{\vee}=\left\{\alpha^{\vee}=1,-\alpha^{\vee}=-1\right\}
$$

$L_{\mathbb{Z}}=H \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha}$
$=\mathbb{Z} h \oplus \mathbb{Z} x_{\alpha} \oplus \mathbb{Z}_{-\alpha}$,

	x_{α}	$x_{-\alpha}$	h
x_{α}	0	$-h$	$2 x_{\alpha}$
$x_{-\alpha}$	h	0	$-2 x_{-\alpha}$
h	$-2 x_{\alpha}$	$2 x_{-\alpha}$	0

$$
\begin{gathered}
\mathrm{A}_{1}{ }^{\text {ad }}: X=Y=\mathbb{Z}, \\
\Phi=\{\alpha=1,-\alpha=-1\}, \\
\Phi^{\vee}=\left\{\alpha^{\vee}=2,-\alpha^{\vee}=-2\right\}, \\
L_{\mathbb{Z}}=H \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha} \\
= \\
\mathbb{Z} h \oplus \mathbb{Z} x_{\alpha} \oplus \mathbb{Z} x_{-\alpha}, \\
\\
\hline x_{\alpha} \\
x_{-\alpha} \\
x_{\alpha} \\
x_{-\alpha} \\
h
\end{gathered} x_{-\alpha} \quad h \begin{array}{ccc}
& -2 h & x_{\alpha} \\
-x_{\alpha} & x_{-\alpha} & -x_{-\alpha}
\end{array}
$$

Example: B_{2}

/ department of mathematics and computer science

- A square
- A root system of type B_{2} - A Lie algebra of type B_{2}

Example: B_{2}

/ department of mathematics and computer science

- A square
- A root system of type B_{2}
- A Lie algebra of type B_{2}

Example: B_{2}

Example: B_{2}

Example: G_{2}

/ department of mathematics and computer science

- Two hexagons
- A root system of type G_{2}
- A Lie algebra
of type G_{2}

TU/e
Technische Universiteit Eindhoven
University of Technology

Example: G_{2}

/ department of mathematics and computer science

- Two hexagons
- A root system of type G_{2}
- A Lie algebra of type G_{2}

TU/e
Technische Universiteit Eindhoven
University of Technology

Example: G_{2}

- Two hexagons
- A root system of type G_{2}
- A Lie algebra of type G_{2}

Example: G_{2}

- Two hexagons
- A root system of type G_{2}
- A Lie algebra of type G_{2}

Outline

1. Why study Lie algebras?
2. Defining Lie algebras

- Root system
- Root datum
- Lie algebra

3. Examples

- A_{1}, B_{2}, G_{2}
- A_{2}

4. Computing Chevalley Bases

- Why?
- How?
- Strange things in small characteristic
- Solving these things

5. Conclusion, Future research

Big example: 3×3 matrices, trace 0

- L = matrices, 3×3, trace 0 ;
- $[x, y]:=x y-y x$;

$$
H=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) ;
$$

- Claim: L is of type A_{2}.

Big example: 3×3 matrices, trace 0 (contd)

- $h_{i}, h_{j} \in H:$
$\left[h_{i}, h_{j}\right]=0$,
- $h_{i} \in H, \alpha \in \Phi$:
- $\alpha \in \Phi$:
$\left[x_{\alpha}, h_{i}\right]=\left\langle\alpha, f_{i}\right\rangle X_{\alpha}$,
- $\alpha, \beta \in \Phi$:

$$
\left[x_{-\alpha}, x_{\alpha}\right]=\sum_{i=1}^{n}\left\langle e_{i}, \alpha^{\vee}\right\rangle h_{i}
$$

$\left[x_{\alpha}, x_{\beta}\right]= \begin{cases}N_{\alpha, \beta} x_{\alpha+\beta} & \text { if } \alpha+\beta \in \Phi, \\ 0 & \text { otherwise } .\end{cases}$

"Adjoint" root datum:

- Pos. roots: $(1,0),(0,1),(1,1)$,
- Pos. coroots: $(2,-1),(-1,2),(1,1)$.

Big example: 3×3 matrices, trace 0 (contd)

- So we can compute a Chevalley basis Chevalley bases in this case!
- And thus exhibit a (quite special) element of Aut(L):

- Can we make the machine do this?

Big example: 3×3 matrices, trace 0 (contd)

- So we can compute a Chevalley basis Chevalley bases in this case!
- And thus exhibit a (quite special) element of $\operatorname{Aut}(L)$:

$$
\begin{array}{rll}
\alpha & \leftrightarrow & -\alpha \\
\beta & \leftrightarrow & \alpha+\beta \\
-\beta & \leftrightarrow & -(\alpha+\beta)
\end{array}
$$

- Can we make the machine do this?

Outline

1. Why study Lie algebras?
2. Defining Lie algebras

- Root system
- Root datum
- Lie algebra

3. Examples

- A_{1}, B_{2}, G_{2}
- A_{2}

4. Computing Chevalley Bases

- Why?
- How?
- Strange things in small characteristic
- Solving these things

5. Conclusion, Future research

Chevalley Bases

Definition (Chevalley Lie Algebra)

$$
\text { Formal basis: } L_{\mathbb{Z}}=\bigoplus_{i=1, \ldots, n} \mathbb{Z} h_{i} \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha} \text {, }
$$

Multiplication : [., .]
$L_{\mathbb{F}}=L_{\mathbb{Z}} \otimes \mathbb{F}$ gives a Lie algebra over \mathbb{F}.

- Idea: Given any Lie algebra, find a Chevalley basis.
- Why?
- Because transformation between two Chevalley bases is automorphism of L!

Chevalley Bases

Definition (Chevalley Lie Algebra)

$$
\text { Formal basis: } L_{\mathbb{Z}}=\bigoplus_{i=1, \ldots, n} \mathbb{Z} h_{i} \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha} \text {, }
$$

Multiplication : [.,.]

$$
L_{\mathbb{F}}=L_{\mathbb{Z}} \otimes \mathbb{F} \text { gives a Lie algebra over } \mathbb{F} .
$$

- Idea: Given any Lie algebra, find a Chevalley basis.
- Why?
- Because transformation between two Chevalley bases is automorphism of L !

Chevalley Bases

Definition (Chevalley Lie Algebra)

$$
\text { Formal basis: } L_{\mathbb{Z}}=\bigoplus_{i=1, \ldots, n} \mathbb{Z} h_{i} \oplus \bigoplus_{\alpha \in \Phi} \mathbb{Z} x_{\alpha},
$$

Multiplication : [.,.]

$$
L_{\mathbb{F}}=L_{\mathbb{Z}} \otimes \mathbb{F} \text { gives a Lie algebra over } \mathbb{F} .
$$

- Idea: Given any Lie algebra, find a Chevalley basis.
- Why?
- Because transformation between two Chevalley bases is automorphism of L !

Chevalley Bases

Definition (Chevalley Lie Algebra)

$$
\text { Formal basis: } L_{\mathbb{Z}}=\bigoplus_{i=1, \ldots, n} \mathbb{Z} h_{i} \oplus \bigoplus_{a \in \Phi} \mathbb{Z} x_{\alpha},
$$

Multiplication : [.,.]

$$
L_{\mathbb{F}}=L_{\mathbb{Z}} \otimes \mathbb{F} \text { gives a Lie algebra over } \mathbb{F} .
$$

- Idea: Given any Lie algebra, find a Chevalley basis.
- Why?
- Because transformation between two Chevalley bases is automorphism of L !

The Game

(Cohen/Murray, indep. Ryba)
Also given: Root datum R, splitting Cartan subalgebra $H=Y \otimes \mathbb{F}$
(De Graaf, Murray)
Char. $0, \mathrm{p} \geq$ 5: Implemented in GAP, Magma

The Game

(Cohen/Murray, indep. Ryba)
Also given: Root datum R, splitting Cartan subalgebra $H=Y \otimes \mathbb{F}$
(De Graaf, Murray)
Char. $0, \mathrm{p} \geq 5$: Implemented in GAP, Magma

(Cohen/Murray, indep. Ryba)
Also given: Root datum R, splitting Cartan subalgebra $H=Y \otimes \mathbb{F}$
(De Graaf, Murray)
Char. $0, \mathrm{p} \geq 5$: Implemented in GAP, Magma

Chevalley Basis Algorithm

ChevalleyBasis

in: A simple Lie algebra L,
a splitting Cartan subalgebra H of L, and
a root datum $R=\left(X, \Phi, Y, \Phi^{\vee}\right)$.
out: \quad A Chevalley basis B for L with respect to H and R. begin
1 let $\left\{E_{1}, \ldots, E_{m}\right\}=\operatorname{Diagonalize}(L, H)$,
2 let $\left\{\bar{X}_{1}, \ldots, \bar{X}_{|\Phi|}\right\}=\operatorname{Straighten}\left(L,\left\{E_{1}, \ldots, E_{m}\right\}\right)$,
3 let $l=\operatorname{IDENTIFYRoots}\left(L, R,\left\{\bar{X}_{1}, \ldots, \bar{X}_{|\Phi|}\right\}\right)$,
4 let $\left[X_{\alpha} \mid \alpha \in \Phi\right],\left[h_{1}, \ldots, h_{\operatorname{rnk}(\Phi)}\right]=\operatorname{SCALEToBASIS}\left(L, H,\left\{\bar{X}_{1}, \ldots, \bar{X}_{|\Phi|}\right\}, \imath\right)$,
5 return $\left[X_{\alpha} \mid \alpha \in \Phi\right],\left[h_{1}, \ldots, h_{\mathrm{rnk}(\Phi)}\right]$.
end
Algorithm: Finding a Chevalley Basis

Strange things in small characteristic (I)

Observe:

- $h \mapsto \frac{1}{2} h$ maps $\operatorname{Lie}\left(\mathrm{A}_{1}{ }^{\mathrm{sc}}, \mathbb{F}\right)$ to $\operatorname{Lie}\left(\mathrm{A}_{1}{ }^{\text {ad }}, \mathbb{F}\right)$,
- $\operatorname{SoLie}\left(\mathrm{A}_{1}{ }^{\text {sc }}, \mathbb{F}\right) \cong \operatorname{Lie}\left(\mathrm{A}_{1}{ }^{\text {ad }}, \mathbb{F}\right)$,
- Except if char $(\mathbb{F})=2$!

Strange things in small characteristic (I)

Observe:

- $h \mapsto \frac{1}{2} h$ maps $\operatorname{Lie}\left(\mathrm{A}_{1}{ }^{\text {sc }}, \mathbb{F}\right)$ to $\operatorname{Lie}\left(\mathrm{A}_{1}{ }^{\text {ad }}, \mathbb{F}\right)$,
- $\operatorname{SoLie}\left(\mathrm{A}_{1}{ }^{\text {sc }}, \mathbb{F}\right) \cong \operatorname{Lie}\left(\mathrm{A}_{1}{ }^{\text {ad }}, \mathbb{F}\right)$,
- Except if char $(\mathbb{F})=2$!

Strange things in small characteristic (I)

Observe:

- $h \mapsto \frac{1}{2} h$ maps $\operatorname{Lie}\left(\mathrm{A}_{1}{ }^{\text {sc }}, \mathbb{F}\right)$ to $\operatorname{Lie}\left(\mathrm{A}_{1}{ }^{\text {ad }}, \mathbb{F}\right)$,
- $\operatorname{So} \operatorname{Lie}\left(\mathrm{A}_{1}{ }^{\text {sc }}, \mathbb{F}\right) \cong \operatorname{Lie}\left(\mathrm{A}_{1}{ }^{\text {ad }}, \mathbb{F}\right)$,
- Except if char $(\mathbb{F})=2$!

Strange things in small characteristic (II)

- $h_{1}=-\frac{2}{3} c_{1}-\frac{1}{3} c_{2}$
$h_{2}=-\frac{1}{3} c_{1}-\frac{2}{3} c_{2}$
- But then what happens in char. 3 ?!
- We computed with the "adjoint" root datum; but Trace 0 matrices \leftrightarrow "simply connected" root datum!
- Isomorphic \Leftrightarrow char. $\neq 3$!

Technische Universiteit
Eindhoven
University of Technology

Strange things in small characteristic (II)

- $h_{1}=-\frac{2}{3} c_{1}-\frac{1}{3} c_{2}$
$h_{2}=-\frac{1}{3} c_{1}-\frac{2}{3} c_{2}$
- But then what happens in char. 3 ?!
- We computed with the "adjoint" root datum; but Trace 0 matrices \leftrightarrow "simply connected" root datum!
- Isomorphic \Leftrightarrow char. $\neq 3$!

Strange things in small characteristic (II)

- $h_{1}=-\frac{2}{3} c_{1}-\frac{1}{3} c_{2}$
$h_{2}=-\frac{1}{3} c_{1}-\frac{2}{3} c_{2}$
- But then what happens in char. 3 ?!
- We computed with the "adjoint" root datum; but Trace 0 matrices \leftrightarrow "simply connected" root datum!
- Isomorphic \Leftrightarrow char. $\neq 3$!

Strange things in small characteristic (III)

- Use action of H to diagonalize L and find x_{α},
- Except if the characteristic is 2 !

Strange things in small characteristic (III)

- Use action of H to diagonalize L and find x_{α},
- Except if the characteristic is 2!

Strange things in small characteristic (III)

						H		x_{α}
	x_{α}	$x_{-\alpha}$	h	\mathbb{Z}^{1}				
x_{α}	0	$-2 h$	x_{α}	(1)				
$x_{-\alpha}$	$2 h$	0	$-x_{-\alpha}$	(-1)				
h	$-x_{\alpha}$	$x_{-\alpha}$	0	(0)				

- Use action of H to diagonalize L and find x_{α},
- Except if the characteristic is 2 !

Strange things in small characteristic (IV)

	\ldots	\boldsymbol{h}_{1}	\boldsymbol{h}_{2}	\mathbb{Z}
\boldsymbol{x}_{α}		$2 \boldsymbol{x}_{\alpha}$	$-\boldsymbol{x}_{\alpha}$	$(2,-1)$
\boldsymbol{x}_{β}		$-3 \boldsymbol{x}_{\beta}$	$\mathbf{2} \boldsymbol{x}_{\beta}$	$(-3,2)$
$\boldsymbol{x}_{\alpha+\beta}$		$-\boldsymbol{x}_{\alpha+\beta}$	$\boldsymbol{x}_{\alpha+\beta}$	$(-1,1)$
$\boldsymbol{x}_{2 \alpha+\beta}$		$\boldsymbol{x}_{2 \alpha+\beta}$	0	$(1,0)$
$\boldsymbol{x}_{3 \alpha+\beta}$		$3 \boldsymbol{x}_{3 \alpha+\beta}$	$-\boldsymbol{x}_{3 \alpha+\beta}$	$(3,-1)$
$\boldsymbol{x}_{3 \alpha+2 \beta}$		0	$\boldsymbol{x}_{3 \alpha+2 \beta}$	$(0,1)$
\vdots				

Strange things in small characteristic (IV)

	\ldots	h_{1}	h_{2}	\mathbb{Z}
\boldsymbol{x}_{α}		$2 x_{\alpha}$	$-x_{\alpha}$	$(2,-1)$
x_{β}		$-3 x_{\beta}$	$2 x_{\beta}$	$(-3,2)$
$x_{\alpha+\beta}$		$-x_{\alpha+\beta}$	$x_{\alpha+\beta}$	$(-1,1)$
$x_{2 \alpha+\beta}$		$x_{2 \alpha+\beta}$	0	$(1,0)$
$x_{3 \alpha+\beta}$		$3 x_{3 \alpha+\beta}$	$-x_{3 \alpha+\beta}$	$(3,-1)$
$x_{3 \alpha+2 \beta}$		0	$x_{3 \alpha+2 \beta}$	$(0,1)$
\vdots				

Strange things in small characteristic (IV)

	\ldots	h_{1}	h_{2}	\mathbb{Z}
x_{α}		$2 x_{\alpha}$	$-x_{\alpha}$	$(2,-1)$
x_{β}		$-3 x_{\beta}$	$2 x_{\beta}$	$(-3,2)$
$x_{\alpha+\beta}$		$-x_{\alpha+\beta}$	$x_{\alpha+\beta}$	$(-1,1)$
$x_{2 \alpha+\beta}$		$x_{2 \alpha+\beta}$	0	$(1,0)$
$x_{3 \alpha+\beta}$		$3 x_{3 \alpha+\beta}$	$-x_{3 \alpha+\beta}$	$(3,-1)$
$x_{3 \alpha+2 \beta}$		0	$x_{3 \alpha+2 \beta}$	$(0,1)$
$x_{-\alpha}$		$-2 x_{-\alpha}$	$x_{-\alpha}$	$(-2,1)$
$x_{-\beta}$		$3 x_{-\beta}$	$-2 x_{-\beta}$	$(3,-2)$
$x_{-\alpha-\beta}$		$x_{-\alpha-\beta}$	$-x_{-\alpha-\beta}$	$(1,-1)$
$x_{-2 \alpha-\beta}$		$-x_{-2 \alpha-\beta}$	0	$(-1,0)$
$x_{-3 \alpha-\beta}$		$-3 x_{-3 \alpha-\beta}$	$x_{-3 \alpha-\beta}$	$(-3,1)$
$x_{-3 \alpha-2 \beta}$		0	$-x_{-3 \alpha-2 \beta}$	$(0,-1)$
\vdots				

Strange things in small characteristic (IV)

Strange things in small characteristic (IV)

Multidimensional Eigenspaces

Steinberg, 1961

Complete list of multiplicities of roots, for root data of adjoint type

Cohen, R., 2008

Complete list of
multiplicities of roots, for all root data

3	$\mathrm{A}_{2}{ }^{\text {Sc }}$	3^{2}
3	G_{2}	$1^{6}, 3^{2}$
2	$A_{3}{ }^{\text {SC }}, A_{3}^{(a)^{*}}$	4^{3}
2	$\mathrm{Bn}^{\text {ad }}(\mathrm{n} \geq 2)$	$2^{n}, 4\binom{n}{2}$
2	$\mathrm{B}_{2}{ }^{\text {sc }}$	4^{2}
2	$\mathrm{B}_{3} \mathrm{sc}$	6^{3}
2	$\mathrm{B}_{4}{ }^{\text {Sc }}$	$2^{4}, 8^{3}$
2	$\mathrm{Bn}^{\text {sc }}(n \geq 5)$	$\left.2^{n}, 4 \begin{array}{c}n \\ 2\end{array}\right)$
2	$\mathrm{C}_{n}{ }^{\text {ad }}(n \geq 3)$	$2 n^{1}, 2^{2\binom{n}{2}}$
2	$\mathrm{C}_{n}{ }^{\text {cc }}(n \geq 3)$	$2 n^{1}, 4\binom{n}{2}$
2	$\mathrm{D}_{4}^{(a),(b),(a+b)^{*}}$	4^{6}
2	$\mathrm{D}_{4}^{\mathrm{sc}}$	8^{3}
2	$\mathrm{D}_{n}^{(a)^{\star}}, \mathrm{D}_{n}{ }^{\text {sc }}(n \geq 5)$	$4\binom{n}{2}$
2	F_{4}	$2^{12}, 8^{3}$
2	G_{2}	4^{3}
2	all remaining cases 7	

Multidimensional Eigenspaces

Steinberg, 1961

Complete list of multiplicities of roots, for root data of adjoint type

Cohen, R., 2008

Complete list of multiplicities of roots, for all root data

Outline

1. Why study Lie algebras?
2. Defining Lie algebras

- Root system
- Root datum
- Lie algebra

3. Examples

- A_{1}, B_{2}, G_{2}
- A_{2}

4. Computing Chevalley Bases

- Why?
- How?
- Strange things in small characteristic
- Solving these things

5. Conclusion, Future research

Multidimensional Eigenspaces

General Solution Strategies:

1. Nullspaces (ex: G2, char. 3),
2. Ideals (ex: B_{3}, char. 2),
3. Derivation Algebra (ex: A_{2}, char. 3)

Example: Solving G_{2} in char. 3

Example: Solving G_{2} in char. 3

Example: Solving G_{2} in char. 3

Example: Solving B_{3} in char. 2

Example: Solving B_{3} in char. 2

Example: Solving B_{3} in char. 2

/ department of mathematics and computer science
TU/e
Technische Universiteit Eindhoven
University of Technology

Intermezzo: Derivation Algebra

L a Lie algebra,

Definition (Derivation Algebra)

$$
\operatorname{Der}(L)=\{D \in \operatorname{End}(L) \mid D[x, y]=[D x, y]+[x, D y]\} .
$$

Observations:

- $\operatorname{Der}(L)$ with $[D, E]=D E$ is a Lie algebra:
- $L \subset \operatorname{Der}(L)$ via ad:

Intermezzo: Derivation Algebra

L a Lie algebra,

Definition (Derivation Algebra)

$$
\operatorname{Der}(L)=\{D \in \operatorname{End}(L) \mid D[x, y]=[D x, y]+[x, D y]\} .
$$

Observations:

- $\operatorname{Der}(L)$ with $[D, E]=D E$ is a Lie algebra:

$$
\begin{aligned}
{[D,[E, F]](x) } & =D(E F x)=D([E, F(x)]) \\
& =[D E, F(x)]+[E, D F(x)] \\
& =[[D, E], F](x)+[E,[D, F]](x) \\
& =(-[E,[F, D]]-[F,[D, E]])(x)
\end{aligned}
$$

- $L \subseteq \operatorname{Der}(L)$ via ad:

Intermezzo: Derivation Algebra

L a Lie algebra,

Definition (Derivation Algebra)

$$
\operatorname{Der}(L)=\{D \in \operatorname{End}(L) \mid D[x, y]=[D x, y]+[x, D y]\} .
$$

Observations:

- $\operatorname{Der}(L)$ with $[D, E]=D E$ is a Lie algebra:
- $L \subseteq \operatorname{Der}(L)$ via ad:

$$
\operatorname{ad}_{t}([x, y])=[t,[x, y]]=[x,[t, y]]+[[t, x], y]
$$

Example: Solving A_{2} in char. 3

Type	Eigenspaces	Composition
Ad:	$0^{2}, 1^{6}$	$\frac{1}{7}$
SC:	$0^{2}, 3^{2}$	$\frac{7}{1}$

Observations:

- There is only one "7",
- $\operatorname{Der}\left(L^{\mathrm{sc}}\right)=L^{\mathrm{ad}}$.

Example: Solving A_{2} in char. 3

Type	Eigenspaces	Composition
Ad:	$0^{2}, 1^{6}$	$\frac{1}{7}$
SC:	$0^{2}, 3^{2}$	$\frac{7}{1}$

Observations:

- There is only one "7",
- $\operatorname{Der}\left(L^{\mathrm{sc}}\right)=L^{\mathrm{ad}}$.

Conclusion and Future Research

- Main challenges for computing Chevalley bases in small characteristic:
- Multidimensional eigenspaces,
- Broken root chains,
- Found solutions for majority of the cases,
- And implemented these in MAGMA,
- Bigger picture:
- Recognition of groups or Lie algebras,
- Finding conjugators for Lie group elements,
- Finding automorphisms of Lie algebras,

Conclusion and Future Research

- Main challenges for computing Chevalley bases in small characteristic:
- Multidimensional eigenspaces,
- Broken root chains,
- Found solutions for majority of the cases,
- And implemented these in MAGMA,
- Bigger picture:
- Recognition of groups or Lie algebras,
- Finding conjugators for Lie group elements,
- Finding automorphisms of Lie algebras,
- ...

1. Why study Lie algebras?
2. Defining Lie algebras

- Root system
- Root datum
- Lie algebra

3. Examples

- A_{1}, B_{2}, G_{2}
- A_{2}

4. Computing Chevalley Bases
-Why?

- How?
- Strange things in small characteristic
- Solving these things

5. Conclusion, Future research
6. Questions!
/ department of mathematics and computer science
