Simple Lie Algebras having Extremal Elements

Joint work with Arjeh Cohen \& Gábor Ivanyos

Dan Roozemond

Nikolaus 2007

Contents

1. Introduction
2. Previous results
3. Our result
4. Proof

- General case
- Characteristic 5 case

5. Conclusion

Introduction - Lie Algebras - Example

Basefield is algebraically closed, char $\neq 2,3$.

Definition $\left(\mathfrak{s l}_{2}\left(\right.\right.$ type $\left.A_{I}\right)$)

The 2×2 matrices of trace 0 , a basis is

$$
e=\left(\begin{array}{ll}
\mathrm{O} & \mathrm{I} \\
\mathrm{O} & \mathrm{O}
\end{array}\right), f=\left(\begin{array}{ll}
\mathrm{O} & \mathrm{O} \\
\mathrm{I} & \mathrm{O}
\end{array}\right), h=\left(\begin{array}{cc}
\mathrm{I} & \mathrm{O} \\
\mathrm{O} & -\mathrm{I}
\end{array}\right),
$$

and multiplication given by

$$
[x, y]:=x y-y x .
$$

Observe: $h=[e, f] ;[e,[e, f]]=-2 e ;[f,[f, e]]=-2 f$.

Introduction - Extremal Elements

$$
\begin{array}{lll}
A_{\mathrm{I}}: h=[e, f] ; & \\
{[e,[e, e]]=0 ;} & {[e,[e, f]]=-2 e ;} & {[e,[e, h]]=-2[e, e]=0 ;} \\
{[f,[f, e]]=-2 f ;} & {[f,[f, f]]=0 ;} & {[f,[f, h]]=2[f, f]=0}
\end{array}
$$

Notation: $\mathrm{ad}_{x}=[x, \cdot]$.

Definition (Extremal Elements)

$x \in L$ is called extremal if $[x,[x, L]] \subseteq \mathbb{F} x$, i.e. $\operatorname{ad}_{x}^{2}(L) \subseteq \mathbb{F} x$.
$x \in L$ is called a sandwich if $\operatorname{ad}_{x}^{2}(L)=0$.
Observe, by bilinearity, if x is extremal but not a sandwich,

$$
\operatorname{ad}_{x}^{2}(L)=\mathbb{F} x
$$

Previous results (1): Starting point

(Field is algebraically closed and not of characteristic 2,3)

Previous results (2): Classification

(Field is algebraically closed and not of characteristic 2,3,5)

Due to Premet, Strade, Benkart, Block, Kostrikin, et al.

New result

Theorem [Cohen, Ivanyos, R.; 2007]

L a simple finite dimensional Lie algebra, $\operatorname{char}(\mathbb{F}) \neq 2,3, L$ has an extremal element that is not a sandwich. Then

- Either L is generated by extremal elements,
- $\operatorname{Or} \operatorname{char}(\mathbb{F})=5$ and $L \cong W_{\mathrm{I}, \mathrm{I}}(5)$.

New result

New:

- \mathbb{F} is not necessarily algebraically closed,
- Characteristic 5 is included,
- Elementary proof.

A lemma (1)

Lemma

Suppose $S=\langle x, \gamma,[x, y]\rangle$ is an $\mathfrak{s l}_{2}$-triple in L. If x is extremal, then γ acts quadratically on L / S, i.e. $\operatorname{ad}_{y}^{2}(L / S)=0$.

- We consider L / S as an S-module,
- and use the GAP package GBNP (Gröbner Bases for Non-commutative Polynomials) to find a proof.

A lemma (2)

- write X, Y for the action of $\mathrm{ad}_{x}, \operatorname{ad}_{Y}$ on $\operatorname{End}(L / S)$,
- $\left[\operatorname{ad}_{x}, \operatorname{ad}_{Y}\right]=\operatorname{ad}_{x} \operatorname{ad}_{y}-\operatorname{ad}_{Y} \operatorname{ad}_{x}$, so $[X, Y]=X Y-Y X$.

Calculate in $\operatorname{End}(L / S)$:

$$
\begin{aligned}
& {[x,[x, y]]=-2 x \quad \Rightarrow \quad(\mathrm{RI}) X^{2} Y-2 X Y X+Y X^{2}+2 X=0} \\
& {[\gamma,[\gamma, x]]=-2 \gamma \quad \Rightarrow \quad(\mathrm{R} 2)-X Y^{2}+2 Y X Y-Y^{2} X-2 Y=0} \\
& \operatorname{ad}_{x}^{2}(L) \subseteq \mathbb{F} x \subseteq S \Rightarrow \quad \operatorname{so~ad}_{x}^{2}(L)=0 \text { in } L / S\left(\mathrm{R}_{3}\right) X^{2}=0 \text {, } \\
& \text { Use GBNP to compute (traced) GB, fiddle around, and find } \\
& \text { (RI), (R3) } \quad \Rightarrow \quad\left(\mathrm{R}_{4}\right) X Y X-X=0 \text {, } \\
& \text { (R3), (R4) } \quad \Rightarrow \quad\left(R_{5}\right) X Y^{2} X=0 \text {, }
\end{aligned}
$$

A lemma (3)

Denote by R_{2} the left hand side of (R 2). GBNP gives us:

$$
\begin{array}{ll}
0= & Y R_{2} Y X-Y X Y R_{2}+2 Y^{2} X R_{2}-R_{2} Y X Y+X Y R_{2} Y-3 Y R_{2} \\
& -2 Y X R_{2} Y+3 R_{2} Y-2 Y X R_{2} Y-6 R_{2} Y+2 X R_{2} Y^{2} \\
\stackrel{\left(\mathrm{R}_{3}\right)}{=} & \text { I2 } Y^{2}-3 X Y^{3}+7 Y X Y^{2}-5 Y^{2} X Y+Y^{3} X+3 X Y X Y^{3} \\
& -7 Y X Y X Y^{2}+5 Y^{2} X Y X Y-Y^{3} X Y X \\
\stackrel{\left(\mathrm{R}_{3}\right)}{=} & \text { I2 } Y^{2}-3 X Y^{3}+7 Y X Y^{2}-5 Y^{2} X Y+Y^{3} X+3 X Y^{3} \\
& -7 Y X Y^{2}+5 Y^{2} x Y-Y^{3} X \\
\left(\text { R2 }^{=}\right) & \text {I2 } Y^{2},
\end{array}
$$

so that Y^{2} is o if $\mathrm{I} 2 \neq 0, \operatorname{soad}_{\gamma}^{2}(L / S)=0$.

The Witt algebra $W_{\mathrm{I}, \mathrm{I}}(5)$ and $W_{\mathrm{I}, \mathrm{I}}(5)$ (1)

Definition ($W_{1,1}(5)$)

A Lie algebra over \mathbb{F}_{5} with basis elements $\partial_{z}, z \partial_{z}, z^{2} \partial_{z}, z^{3} \partial_{z}, z^{4} \partial_{z}$, and multiplication for example

$$
\begin{align*}
{\left[z^{\mathrm{I}} \partial_{z}, z^{3} \partial_{z}\right] } & :=z^{\mathrm{I}} \partial_{z}\left(z^{3} \partial_{z}\right)-z^{3} \partial_{z}\left(z^{\mathrm{I}} \partial_{z}\right) \tag{I}\\
& =3 z^{\mathrm{I}+2} \partial_{z}-{ }_{1} z^{3+\mathrm{o}} \partial_{z}=2 z^{3} \partial_{z} \tag{2}
\end{align*}
$$

where $z^{i} \partial_{z}:=0$ if $i \notin\{0, \mathrm{I}, 2,3,4\}$.
And its central extension:

Definition ($W_{\mathrm{I}, \mathrm{I}}(5)(\mathrm{Block}, 1966)$)

A Lie algebra over \mathbb{F}_{5} with basis elements $\partial_{z}, z \partial_{z}, z^{2} \partial_{z}, z^{3} \partial_{z}, z^{4} \partial_{z}$, $z^{6} \partial_{z}$, with the same multiplication.

The Witt algebra $W_{I, I}(5)$ and $W_{I, I}(5)(2)$

Definition $\left(W_{\mathrm{I}, \mathrm{I}}(5)(\right.$ Block, 1966))

A Lie algebra over \mathbb{F}_{5} with basis elements $\partial_{z}, z \partial_{z}, z^{2} \partial_{z}, z^{3} \partial_{z}, z^{4} \partial_{z}$, $z^{6} \partial_{z}$, with the same multiplication.

Observe:

$$
\begin{array}{ll}
{\left[-z^{2} \partial_{z},\left[-z^{2} \partial_{z}, \partial_{z}\right]\right]} & =\left[z^{2} \partial_{z},(-2) z \partial_{z}\right]=2 z^{2} \partial_{z}, \\
{\left[-z^{2} \partial_{z},\left[-z^{2} \partial_{z}, z \partial_{z}\right]\right]} & =\left[z^{2} \partial_{z},(-\mathrm{I}) z^{2} \partial_{z}\right]=0, \\
{\left[-z^{2} \partial_{z},\left[-z^{2} \partial_{z}, z^{2} \partial_{z}\right]\right]} & =0, \\
{\left[-z^{2} \partial_{z},\left[-z^{2} \partial_{z}, z^{3} \partial_{z}\right]\right]} & =\left[z^{2} \partial_{z}, z^{4} \partial_{z}\right]=0, \\
{\left[-z^{2} \partial_{z},\left[-z^{2} \partial_{z}, z^{4} \partial_{z}\right]\right]} & =0, \\
{\left[-z^{2} \partial_{z},\left[-z^{2} \partial_{z}, z^{6} \partial_{z}\right]\right]} & =0,
\end{array}
$$

The Witt algebra $W_{\mathrm{I}, \mathrm{I}}(5)$ and $W_{\mathrm{I}, \mathrm{I}}(5)$ (3)

Definition ($W_{\mathrm{I}, \mathrm{I}}(5)$ (Block, 1966))

A Lie algebra over \mathbb{F}_{5} with basis elements $\partial_{z}, z \partial_{z}, z^{2} \partial_{z}, z^{3} \partial_{z}, z^{4} \partial_{z}$, $z^{6} \partial_{z}$, with the same multiplication.

Observe: $-z^{2} \partial_{z}$ is extremal, $\left\langle-z^{2} \partial_{z}, \partial_{z}, 2 z \partial_{z}\right\rangle$ is an $\mathfrak{s l}_{2}$-triple, and $\left[\partial_{z},\left[\partial_{z}, 2 z^{4} \partial_{z}\right]\right]=-z^{2} \partial_{z}$, so ∂_{z} is not extremal.

Proof sketch - General case (1)

1. x is an extremal element of L,
2. Find $\mathfrak{s l}_{2}: x, \gamma, h$, (adapted Jacobson-Morozov),
3. Show that ad_{h} induces a grading of L :

$$
L=L_{-2} \oplus L_{-1} \oplus L_{0} \oplus L_{\mathrm{I}} \oplus L_{2},
$$

i.e.

- $v \in L_{i} \Rightarrow[v, h]=i v$,
- $\left[L_{i}, L_{j}\right] \subseteq L_{i+j}$,
and $x \in L_{-2}$ and $y \in L_{2}$.

Proof sketch - General case (2)

3. Show that ad_{h} induces a grading of L :

$$
L=L_{-2} \oplus L_{-1} \oplus L_{0} \oplus L_{\mathrm{I}} \oplus L_{2},
$$

4. Show that y is extremal (unless char. 5 case),
5. Define the ideal $I=\left\langle x, \gamma, L_{\mathrm{I}}\right\rangle$, by simplicity $I=L$,
6. Find for every $z \in L_{-\mathrm{I}}$ an extremal element $u \in L_{\mathrm{I}}$ such that $z \in\langle x, \gamma, u\rangle$,
7. Conclude that L is generated by extremal elements.

Proof sketch - Characteristic 5 case (1)

ad_{h} induces a grading of L :

$$
\begin{aligned}
& \begin{array}{rllllllllll}
L= & L_{-2} \\
& =\mathbb{F} x & & & L_{-1} & & L_{0} \\
& & \ni h
\end{array} \\
& \longleftarrow \mathrm{ad}_{y} \longrightarrow
\end{aligned}
$$

Now suppose γ is not extremal, i.e. $[\gamma,[\gamma, L]] \nsubseteq \mathbb{F} \gamma$. Then:

- $\left[\gamma, L_{\mathrm{r}}\right] \neq 0$, but $\left[\gamma, L_{\mathrm{I}}\right] \subseteq L_{3}$, so $p=5$ and $\left[\gamma, L_{\mathrm{I}}\right]=L_{-2}=\mathbb{F} x$,
- It follows that $\left[\gamma,\left[\gamma, L_{-I}\right]\right]=\mathbb{F} x$.

Proof sketch - Characteristic 5 case (2)

It follows that $\left[\gamma,\left[\gamma, L_{-I}\right]\right]=\mathbb{F} x$, so there exists a $v \in L_{-_{I}}$ such that

$$
[y,[y, \nu]]=x .
$$

- Define W to be the linear span in L of $\{x, \gamma, h, v,[v, \gamma],[v,[v, \gamma]]\}$.
- Calculate all products, by hand,
- Prove that there is a surjective morphism $\varphi: \widetilde{W_{\mathrm{I}, \mathrm{I}}(5)} \rightarrow \mathrm{W}$.

Proof sketch - Characteristic 5 case (3)

Prove that there is a surjective morphism $\varphi: \widetilde{W_{\mathrm{I}, \mathrm{I}}(5)} \rightarrow W$.

- It remains to prove that $L=W$, since then $L \cong W_{\mathrm{I}, \mathrm{I}}(5)$ (since $\widetilde{W_{\mathrm{I}, \mathrm{I}}(5)}$ is not simple).
Calculate in $\operatorname{End}(L / W)$:

$$
\begin{array}{lll}
& & (\text { R6 }) ~ \\
Y^{2}=0 \\
{[\gamma,[\gamma, v]]=x} & \Rightarrow & \text { (R7) } Y^{2} V-2 Y V Y+V Y^{2}-X=0 \\
{[x,[v, \gamma]]=-v} & \Rightarrow & \text { (R8) } X V Y-X Y V-V X Y+Y V X+V=0 \\
\text { (R6), (R7) } & \Rightarrow & \text { (R9) } X+2 Y V Y=0, \\
\text { (R6), (R2) } & \Rightarrow & \text { (RIo) } Y-Y X Y=0,
\end{array}
$$

Proof sketch - Characteristic 5 case (4)

Denote by R_{9}, R_{I} the left hand side of (R9), (Rio), respectively; GBNP gives us:

$$
\begin{aligned}
\circ & =R_{9}(\mathrm{I}-X Y)-2 Y V R_{\mathrm{Io}} \\
& =(X+2 Y V Y)(\mathrm{I}-X Y)-2 Y V(Y-Y X Y) \\
& =X+2 Y V Y-X^{2} Y-2 Y V Y X Y-2 Y V Y+2 Y V Y X Y \\
& =X
\end{aligned}
$$

it follows that $Y=0$ and $V=0$.

Proof sketch - Characteristic 5 case (5)

- Started with W is linear span of $\{x, \gamma, h, v,[v, \gamma],[v,[v, \gamma]]\}$,
- We proved $X=Y=V=0$.

Conclusion

- So the images of $\operatorname{ad}_{w}(w \in W)$ in $\operatorname{End}(L / W)$ are trivial, so W is an ideal of L.
- But L is simple and W is nontrivial, so $L \cong W$.
- Recall $\varphi: W_{\mathrm{I}, \mathrm{I}}(5) \rightarrow W$, that $W_{\mathrm{I}, \mathrm{I}}(5)$ is simple, and that $\widehat{W_{\mathrm{I}, \mathrm{I}}(5)}$ is nonsimple.
- So $[v,[v, \gamma]]=0$ and $L \cong W_{I, I}(5)$.

Conclusion

Theorem [Cohen, Ivanyos, R.; 2007]

Let L be a simple finite dimensional Lie algebra over a field \mathbb{F} of characteristic not 2,3 . Suppose L has an extremal element that is not a sandwich. Then

- Either L is generated by extremal elements,
- $\operatorname{Or} \operatorname{char}(\mathbb{F})=5$ and $L \cong W_{\mathrm{I}, \mathrm{I}}(5)$.

With an elegant, constructive proof brought to you by GAP and GBNP!

