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Introduction – Lie Algebras – Example

Basefield is algebraically closed, char 6= 2, 3.

Definition (sl2 (type A1))
The 2× 2 matrices of trace 0, a basis is

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
,

and multiplication given by

[x, y] := xy− yx.

Observe: h = [e, f ]; [e, [e, f ]] = −2e; [f , [f , e]] = −2f .
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Introduction – Extremal Elements

A1 : h = [e, f ];
[e, [e, e]] = 0; [e, [e, f ]] = −2e; [e, [e, h]] = −2[e, e] = 0;
[f , [f , e]] = −2f ; [f , [f , f ]] = 0; [f , [f , h]] = 2[f , f ] = 0;

Notation: adx = [x, ·].

Definition (Extremal Elements)
x ∈ L is called extremal if [x, [x, L]] ⊆ Fx, i.e. ad2

x(L) ⊆ Fx.
x ∈ L is called a sandwich if ad2

x(L) = 0.

Observe, by bilinearity, if x is extremal but not a sandwich,

ad2
x(L) = Fx.
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Previous results (1): Starting point

(Field is algebraically closed and not of characteristic 2, 3)

   

Classical
  Gen'd by
Extr. Elts

   Cont. Extr. Elts,
No sandwiches

Containing
Extr. Elts

Finite Dimensional Simple Lie Algebras
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Previous results (2): Classification

(Field is algebraically closed and not of characteristic 2, 3, 5)

   

Finite Dimensional Simple Lie Algebras

Classical
Generated by Extr. Elts
No sandwiches

Not classical
Every extr. elt. is sandwich

Due to Premet, Strade, Benkart, Block, Kostrikin, et al.
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New result

Theorem [Cohen, Ivanyos, R.; 2007]
L a simple finite dimensional Lie algebra, char(F) 6= 2, 3, L has an
extremal element that is not a sandwich. Then

I Either L is generated by extremal elements,
I Or char(F) = 5 and L ∼= W1,1(5).

   

Finite Dimensional Simple Lie Algebras

Classical
Generated by Extr. Elts
No sandwiches

Not classical
Every extr. elt. is sandwich

W1,1(5)

7 of 22



12

/ department of mathematics and computer science

Introduction Previous results New result Proof Conclusion

New result

   

Finite Dimensional Simple Lie Algebras

Classical
Generated by Extr. Elts
No sandwiches

Not classical
Every extr. elt. is sandwich

W1,1(5)

New:
I F is not necessarily algebraically closed,
I Characteristic 5 is included,
I Elementary proof.
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A lemma (1)

Lemma
Suppose S = 〈x, y, [x, y]〉 is an sl2-triple in L. If x is extremal, then y
acts quadratically on L/S, i.e. ad2

y (L/S) = 0.

I We consider L/S as an S-module,
I and use the GAP package GBNP (Gröbner Bases for

Non-commutative Polynomials) to find a proof.
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A lemma (2)

I write X ,Y for the action of adx, ady on End(L/S),
I [adx, ady] = adxady − adyadx, so [X ,Y ] = XY − YX .

Calculate in End(L/S):

[x, [x, y]] = −2x ⇒ (R1) X2Y − 2XYX + YX2 + 2X = 0
[y, [y, x]] = −2y ⇒ (R2) − XY2 + 2YXY − Y2X − 2Y = 0
ad2

x(L) ⊆ Fx ⊆ S ⇒ so ad2
x(L) = 0 in L/S (R3) X2 = 0,

Use GBNP to compute (traced) GB, fiddle around, and find
(R1), (R3) ⇒ (R4) XYX − X = 0,
(R3), (R4) ⇒ (R5) XY2X = 0,
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A lemma (3)

Denote by R2 the left hand side of (R2). GBNP gives us:

0 = YR2YX − YXYR2 + 2Y2XR2 − R2YXY + XYR2Y − 3YR2

−2YXR2Y + 3R2Y − 2YXR2Y − 6R2Y + 2XR2Y2

(R3)
= 12Y2 − 3XY3 + 7YXY2 − 5Y2XY + Y3X + 3XYXY3

−7YXYXY2 + 5Y2XYXY − Y3XYX
(R3)
= 12Y2 − 3XY3 + 7YXY2 − 5Y2XY + Y3X + 3XY3

−7YXY2 + 5Y2xY − Y3X
(R2)
= 12Y2,

so that Y2 is 0 if 12 6= 0, so ad2
y (L/S) = 0.
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The Witt algebra W1,1(5) and W̃1,1(5) (1)
Definition (W1,1(5))

A Lie algebra over F5 with basis elements ∂z, z∂z, z2∂z, z3∂z, z4∂z,
and multiplication for example

[z1∂z, z
3∂z] := z1∂z(z3∂z)− z3∂z(z1∂z) (1)

= 3z1+2∂z − 1z3+0∂z = 2z3∂z, (2)

where zi∂z := 0 if i 6∈ {0, 1, 2, 3, 4}.

And its central extension:

Definition (W̃1,1(5) (Block, 1966))

A Lie algebra over F5 with basis elements ∂z, z∂z, z2∂z, z3∂z, z4∂z,
z6∂z, with the same multiplication.
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The Witt algebra W1,1(5) and W̃1,1(5) (2)

Definition (W̃1,1(5) (Block, 1966))

A Lie algebra over F5 with basis elements ∂z, z∂z, z2∂z, z3∂z, z4∂z,
z6∂z, with the same multiplication.

Observe:

[−z2∂z, [−z2∂z, ∂z]] = [z2∂z, (−2)z∂z] = 2z2∂z,
[−z2∂z, [−z2∂z, z∂z]] = [z2∂z, (−1)z2∂z] = 0,
[−z2∂z, [−z2∂z, z2∂z]] = 0,
[−z2∂z, [−z2∂z, z3∂z]] = [z2∂z, z4∂z] = 0,
[−z2∂z, [−z2∂z, z4∂z]] = 0,

[−z2∂z, [−z2∂z, z6∂z]] = 0,
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The Witt algebra W1,1(5) and W̃1,1(5) (3)

Definition (W̃1,1(5) (Block, 1966))

A Lie algebra over F5 with basis elements ∂z, z∂z, z2∂z, z3∂z, z4∂z,
z6∂z, with the same multiplication.

Observe: −z2∂z is extremal, 〈−z2∂z, ∂z, 2z∂z〉 is an sl2-triple, and
[∂z, [∂z, 2z4∂z]] = −z2∂z, so ∂z is not extremal.
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Proof sketch – General case (1)

1. x is an extremal element of L,

2. Find sl2 : x, y, h, (adapted Jacobson-Morozov),

3. Show that adh induces a grading of L:

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2,

i.e.
I v ∈ Li ⇒ [v, h] = iv,
I [Li, Lj] ⊆ Li+j,

and x ∈ L−2 and y ∈ L2.
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Proof sketch – General case (2)

3. Show that adh induces a grading of L:

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2,

4. Show that y is extremal (unless char. 5 case),

5. Define the ideal I = 〈x, y, L1〉, by simplicity I = L,

6. Find for every z ∈ L−1 an extremal element u ∈ L1 such that
z ∈ 〈x, y, u〉,

7. Conclude that L is generated by extremal elements.
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Proof sketch – Characteristic 5 case (1)

adh induces a grading of L:

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2

= Fx 3 h = Fy

←− adx

ady −→

Now suppose y is not extremal, i.e. [y, [y, L]] 6⊆ Fy. Then:
I [y, L1] 6= 0, but [y, L1] ⊆ L3, so p = 5 and [y, L1] = L−2 = Fx,
I It follows that [y, [y, L−1]] = Fx.
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Proof sketch – Characteristic 5 case (2)

It follows that [y, [y, L−1]] = Fx, so there exists a v ∈ L−1 such that

[y, [y, v]] = x.

I Define W to be the linear span in L of
{x, y, h, v, [v, y], [v, [v, y]]}.

I Calculate all products, by hand,

I Prove that there is a surjective morphism ϕ : W̃1,1(5)→W.
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Proof sketch – Characteristic 5 case (3)

Prove that there is a surjective morphism ϕ : W̃1,1(5)→W.
I It remains to prove that L = W, since then L ∼= W1,1(5) (since

W̃1,1(5) is not simple).

Calculate in End(L/W):

(R6) Y2 = 0
[y, [y, v]] = x ⇒ (R7) Y2V − 2YVY + VY2 − X = 0
[x, [v, y]] = −v ⇒ (R8) XVY − XYV − VXY + YVX + V = 0
(R6), (R7) ⇒ (R9) X + 2YVY = 0,
(R6), (R2) ⇒ (R10) Y − YXY = 0,
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Proof sketch – Characteristic 5 case (4)

Denote by R9, R10 the left hand side of (R9), (R10), respectively;
GBNP gives us:

0 = R9(1− XY)− 2YVR10

= (X + 2YVY)(1− XY)− 2YV(Y − YXY)
= X + 2YVY − X2Y − 2YVYXY − 2YVY + 2YVYXY
= X ,

it follows that Y = 0 and V = 0.
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Proof sketch – Characteristic 5 case (5)

I Started with W is linear span of {x, y, h, v, [v, y], [v, [v, y]]},
I We proved X = Y = V = 0.

Conclusion
I So the images of adw (w ∈W) in End(L/W) are trivial, so W

is an ideal of L.
I But L is simple and W is nontrivial, so L ∼= W.

I Recall ϕ : W̃1,1(5)→W, that W1,1(5) is simple, and that

W̃1,1(5) is nonsimple.
I So [v, [v, y]] = 0 and L ∼= W1,1(5).
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Conclusion

Theorem [Cohen, Ivanyos, R.; 2007]
Let L be a simple finite dimensional Lie algebra over a field F of
characteristic not 2, 3. Suppose L has an extremal element that is
not a sandwich. Then

I Either L is generated by extremal elements,
I Or char(F) = 5 and L ∼= W1,1(5).

With an elegant, constructive proof brought to you by GAP and
GBNP!
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