TU/e Simple Lie Algebras having Extremal Elements

Joint work with Arjeh Cohen & Gábor Ivanyos

Dan Roozemond Nikolaus 2007

/ department of mathematics and computer science

TU/e technische universiteit eindhoven

Introduction Previous results New result Proof Conclusion

Contents

- 1. Introduction
- 2. Previous results
- 3. Our result
- 4. Proof
 - General case
 - Characteristic 5 case
- 5. Conclusion

Introduction – Lie Algebras – Example

Basefield is algebraically closed, char \neq 2, 3.

Definition (\mathfrak{sl}_2 (type A_1))

TU/e

The 2 \times 2 matrices of trace 0, a basis is

$$e = \begin{pmatrix} \circ & \mathbf{I} \\ \circ & \circ \end{pmatrix}, f = \begin{pmatrix} \circ & \circ \\ \mathbf{I} & \circ \end{pmatrix}, h = \begin{pmatrix} \mathbf{I} & \circ \\ \circ & -\mathbf{I} \end{pmatrix},$$

and multiplication given by

$$[x, y] := xy - yx.$$

Observe: h = [e, f]; [e, [e, f]] = -2e; [f, [f, e]] = -2f.

TU/e technische universiteit eindhoven

Introduction – Extremal Elements

$$\begin{array}{ll} A_{\rm I}:h=[e,f];\\ [e,[e,e]]={\rm o}; & [e,[e,f]]=-2e; & [e,[e,h]]=-2[e,e]={\rm o};\\ [f,[f,e]]=-2f; & [f,[f,f]]={\rm o}; & [f,[f,h]]=2[f,f]={\rm o}; \end{array}$$

Notation: $ad_x = [x, \cdot]$.

Definition (Extremal Elements)

 $x \in L$ is called *extremal* if $[x, [x, L]] \subseteq \mathbb{F}x$, i.e. $\operatorname{ad}_x^2(L) \subseteq \mathbb{F}x$. $x \in L$ is called a *sandwich* if $\operatorname{ad}_x^2(L) = 0$.

Observe, by bilinearity, if *x* is extremal but not a sandwich,

$$\operatorname{ad}_{x}^{2}(L) = \mathbb{F}x.$$

Due to Premet, Strade, Benkart, Block, Kostrikin, et al.

TU/e

New result

Theorem [Cohen, Ivanyos, R.; 2007]

L a simple finite dimensional Lie algebra, $char(\mathbb{F})\neq$ 2, 3, L has an extremal element that is not a sandwich. Then

• Either *L* is generated by extremal elements,

• Or char(
$$\mathbb{F}$$
) = 5 and $L \cong W_{I,I}(5)$.

/ department of mathematics and computer science

TU/e technische universiteit eindhoven

Introduction Previous results New result Proof Conclusion

New result

New:

- ▶ **F** is not necessarily algebraically closed,
- Characteristic 5 is included,
- Elementary proof.

TU/e

Introduction Previous results New result Proof Conclusion

A lemma (1)

Lemma

Suppose $S = \langle x, y, [x, y] \rangle$ is an \mathfrak{sl}_2 -triple in L. If x is extremal, then y acts quadratically on L/S, i.e. $\operatorname{ad}_y^2(L/S) = 0$.

- ▶ We consider *L*/*S* as an *S*-module,
- and use the GAP package GBNP (Gröbner Bases for Non-commutative Polynomials) to find a proof.

A lemma (2)

<u>TU/e</u>

▶ write X, Y for the action of ad_x, ad_y on End(L/S),
▶ [ad_x, ad_y] = ad_xad_y - ad_yad_x, so [X, Y] = XY - YX.
Calculate in End(L/S):

$$\begin{split} & [x, [x, y]] = -2x \quad \Rightarrow \quad (\text{RI}) \ X^2 Y - 2XYX + YX^2 + 2X = o \\ & [y, [y, x]] = -2y \quad \Rightarrow \quad (\text{R2}) \ -XY^2 + 2YXY - Y^2X - 2Y = o \\ & \text{ad}_x^2(L) \subseteq \mathbb{F}x \subseteq S \quad \Rightarrow \quad \text{so } \text{ad}_x^2(L) = o \text{ in } L/S \text{ (R3) } X^2 = o, \\ & \text{Use GBNP to compute (traced) GB, fiddle around, and find} \\ & (\text{RI}), (\text{R3}) \qquad \Rightarrow \quad (\text{R4}) \ XYX - X = o, \\ & (\text{R3}), (\text{R4}) \qquad \Rightarrow \quad (\text{R5}) \ XY^2X = o, \end{split}$$

A lemma (3)

<u>TU/e</u>

Denote by R_2 the left hand side of (R2). GBNP gives us:

$$o = YR_2YX - YXYR_2 + 2Y^2XR_2 - R_2YXY + XYR_2Y - 3YR_2 -2YXR_2Y + 3R_2Y - 2YXR_2Y - 6R_2Y + 2XR_2Y^2$$

$$\begin{array}{rcl} (K3) \\ = & 12Y^2 - 3XY^3 + 7YXY^2 - 5Y^2XY + Y^3X + 3XYXY^3 \\ & -7YXYXY^2 + 5Y^2XYXY - Y^3XYX \end{array}$$

$$\begin{array}{l} \text{(K3)} \\ = & 12Y^2 - 3XY^3 + 7YXY^2 - 5Y^2XY + Y^3X + 3XY^3 \\ & -7YXY^2 + 5Y^2xY - Y^3X \\ \text{(R2)} \\ = & 12Y^2, \end{array}$$

so that Y^2 is 0 if $I2 \neq 0$, so $ad_{\gamma}^2(L/S) = 0$.

technische universiteit eindhoven Introduction Previous results New result Proof Conclusion The Witt algebra $W_{I,I}(5)$ and $W_{I,I}(5)$ (1) Definition ($W_{I,I}(5)$) A Lie algebra over \mathbb{F}_5 with basis elements $\partial_z, z\partial_z, z^2\partial_z, z^3\partial_z, z^4\partial_z$, and multiplication for example

$$[z^{\mathrm{I}}\partial_z, z^3\partial_z] := z^{\mathrm{I}}\partial_z(z^3\partial_z) - z^3\partial_z(z^{\mathrm{I}}\partial_z)$$
(I)

$$= 3z^{1+2}\partial_z - 1z^{3+\circ}\partial_z = 2z^3\partial_z, \qquad (2)$$

where $z^i \partial_z := 0$ if $i \notin \{0, 1, 2, 3, 4\}$.

And its central extension:

Definition ($W_{I,I}(5)$ (Block, 1966))

A Lie algebra over \mathbb{F}_5 with basis elements $\partial_z, z \partial_z, z^2 \partial_z, z^3 \partial_z, z^4 \partial_z$, $z^6 \partial_z$, with the same multiplication.

/ department of mathematics and computer science

Definition ($W_{I,I}(5)$ (Block, 1966))

A Lie algebra over \mathbb{F}_5 with basis elements $\partial_z, z \partial_z, z^2 \partial_z, z^3 \partial_z, z^4 \partial_z$, $z^6 \partial_z$, with the same multiplication.

Observe:

$$\begin{split} & [-z^2\partial_z, [-z^2\partial_z, \partial_z]] &= [z^2\partial_z, (-2)z\partial_z] = 2z^2\partial_z, \\ & [-z^2\partial_z, [-z^2\partial_z, z\partial_z]] &= [z^2\partial_z, (-1)z^2\partial_z] = 0, \\ & [-z^2\partial_z, [-z^2\partial_z, z^2\partial_z]] &= 0, \\ & [-z^2\partial_z, [-z^2\partial_z, z^3\partial_z]] &= [z^2\partial_z, z^4\partial_z] = 0, \\ & [-z^2\partial_z, [-z^2\partial_z, z^4\partial_z]] &= 0, \\ & [-z^2\partial_z, [-z^2\partial_z, z^6\partial_z]] &= 0, \end{split}$$

Definition ($W_{I,I}(5)$ (Block, 1966))

A Lie algebra over \mathbb{F}_5 with basis elements $\partial_z, z \partial_z, z^2 \partial_z, z^3 \partial_z, z^4 \partial_z$, $z^6 \partial_z$, with the same multiplication.

Observe: $-z^2 \partial_z$ is extremal, $\langle -z^2 \partial_z, \partial_z, 2z \partial_z \rangle$ is an \mathfrak{sl}_2 -triple, and $[\partial_z, [\partial_z, 2z^4 \partial_z]] = -z^2 \partial_z$, so ∂_z is not extremal.

Proof sketch – General case (1)

- **1.** *x* is an extremal element of *L*,
- **2.** Find \mathfrak{sl}_2 : x, y, h, (adapted Jacobson-Morozov),
- **3.** Show that ad_h induces a *grading* of *L*:

$$L = L_{-2} \oplus L_{-1} \oplus L_{0} \oplus L_{1} \oplus L_{2},$$

i.e.

TU/e

•
$$v \in L_i \Rightarrow [v, h] = iv$$
,
• $[L_i, L_j] \subseteq L_{i+j}$,
and $x \in L_{-2}$ and $y \in L_2$.

Proof sketch – General case (2)

TU/e

3. Show that ad_{*h*} induces a *grading* of *L*:

 $L = L_{-2} \oplus L_{-1} \oplus L_{0} \oplus L_{1} \oplus L_{2},$

- 4. Show that *y* is extremal (unless char. 5 case),
- **5.** Define the ideal $I = \langle x, y, L_{I} \rangle$, by simplicity I = L,
- 6. Find for every $z \in L_{-1}$ an extremal element $u \in L_1$ such that $z \in \langle x, y, u \rangle$,
- 7. Conclude that *L* is generated by extremal elements.

Proof sketch – Characteristic 5 case (1)

ad_{*h*} induces a grading of *L*:

TU/e

$$L = L_{-2} \oplus L_{-I} \oplus L_{0} \oplus L_{I} \oplus L_{2}$$
$$= \mathbb{F}x \qquad \Rightarrow h \qquad = \mathbb{F}y$$
$$\xleftarrow{}_{ad_{y} \longrightarrow} ad_{x}$$

Now suppose *y* is not extremal, i.e. $[y, [y, L]] \not\subseteq \mathbb{F}y$. Then:

- ▶ $[y, L_I] \neq 0$, but $[y, L_I] \subseteq L_3$, so p = 5 and $[y, L_I] = L_{-2} = \mathbb{F}x$,
- It follows that $[y, [y, L_{-1}]] = \mathbb{F}x$.

Proof sketch – Characteristic 5 case (2)

It follows that $[y, [y, L_{-1}]] = \mathbb{F}x$, so there exists a $v \in L_{-1}$ such that

 $[\gamma, [\gamma, \nu]] = x.$

- ▶ Define *W* to be the linear span in *L* of {*x*, *y*, *h*, *v*, [*v*, *y*], [*v*, [*v*, *y*]]}.
- Calculate all products, by hand,
- ▶ Prove that there is a surjective morphism $\varphi : W_{I,I}(5) \to W$.

Proof sketch – Characteristic 5 case (3)

Prove that there is a surjective morphism $\varphi: \widetilde{W}_{I,I}(5) \to W$.

- It remains to prove that L = W, since then $L \cong W_{I,I}(5)$ (since $\widetilde{W_{I,I}(5)}$ is not simple).
- Calculate in End(L/W):

TU/e

$$(R6) Y^{2} = o$$

$$[y, [y, \nu]] = x \quad \Rightarrow \quad (R7) Y^{2}V - 2YVY + VY^{2} - X = o$$

$$[x, [\nu, y]] = -\nu \quad \Rightarrow \quad (R8) XVY - XYV - VXY + YVX + V = o$$

$$(R6), (R7) \quad \Rightarrow \quad (R9) X + 2YVY = o,$$

$$(R6), (R2) \quad \Rightarrow \quad (R10) Y - YXY = o,$$

Proof sketch – Characteristic 5 case (4)

Denote by R_9 , R_{10} the left hand side of (R9), (R10), respectively; GBNP gives us:

$$o = R_{9}(I - XY) - 2YVR_{IO}$$

= $(X + 2YVY)(I - XY) - 2YV(Y - YXY)$
= $X + 2YVY - X^{2}Y - 2YVYXY - 2YVY + 2YVYXY$
= X ,

it follows that Y = o and V = o.

Proof sketch - Characteristic 5 case (5)

- Started with *W* is linear span of $\{x, y, h, v, [v, y], [v, [v, y]]\}$,
- We proved X = Y = V = o.

Conclusion

- So the images of ad_w (w ∈ W) in End(L/W) are trivial, so W is an ideal of L.
- But *L* is simple and *W* is nontrivial, so $L \cong W$.
- Recall $\varphi : \widetilde{W}_{I,I}(5) \to W$, that $W_{I,I}(5)$ is simple, and that $\widetilde{W}_{I,I}(5)$ is nonsimple.

• So
$$[\nu, [\nu, \gamma]] = 0$$
 and $L \cong W_{I,I}(5)$.

TU/e

Introduction Previous results New result Proof Conclusion

Theorem [Cohen, Ivanyos, R.; 2007]

Let *L* be a simple finite dimensional Lie algebra over a field \mathbb{F} of characteristic not 2, 3. Suppose *L* has an extremal element that is not a sandwich. Then

• Either *L* is generated by extremal elements,

• Or char(
$$\mathbb{F}$$
) = 5 and $L \cong W_{I,I}(5)$.

With an elegant, constructive proof brought to you by GAP and GBNP!