# Some notes on the Vogel Algorithm 

Dan Roozemond<br>6 June 2007

## Contents

- Knots
- Braids
- The Vogel Algorithm
- Vogel moves
- Reading the braid word
- Conclusion


## Knots



## Representing a Knot: The Gauss Code



## Representing a Knot: The Gauss Code



Gauss Code: $-\mathrm{I},+2,-3,+4,+5,+\mathrm{I},-2,+6,+7,+3,-4,-7,-6,-5$

Representing a Knot: Oriented Gauss Code



## Representing a Knot: Oriented Gauss Code



## Representing a Knot: Oriented Gauss Code



$$
\begin{aligned}
& \text { Oriented Gauss Code: } \\
& -\mathrm{I},+2,-3,+4,+5,+\mathrm{I},-2,+6,+7,+3,-4,-7,-6,-5 /-\cdots+-+
\end{aligned}
$$

# TU/e 

## Seifert Circles



Seifert Circles: [r,2,

# TU/e 

## Seifert Circles



Seifert Circles: [ $\mathrm{I}, 2,3$,

# TU/e 

## Seifert Circles



Seifert Circles: [ $\mathrm{I}, 2,3,4,5$
/ department of mathematics and computer science

# TU/e 

## Seifert Circles



Seifert Circles: $[\mathrm{I}, 2,3,4,5],[\mathrm{I}, 2$
/ department of mathematics and computer science

# TU/e 

## Seifert Circles



Seifert Circles: $[\mathrm{I}, 2,3,4,5],[\mathrm{I}, 2,6,5]$
/ department of mathematics and computer science

# TU/e 

## Seifert Circles



Seifert Circles: $[\mathrm{I}, 2,3,4,5],[\mathrm{I}, 2,6,5],[3,4,7]$
/ department of mathematics and computer science

# TU/e 

## Seifert Circles



Seifert Circles: $[\mathrm{I}, 2,3,4,5],[\mathrm{I}, 2,6,5],[3,4,7],[6,7]$
/ department of mathematics and computer science

## Reidemeister Moves - I



## Reidemeister Moves - II

$$
\ldots, a, b, \ldots, c, d, \ldots \leftrightarrow \ldots, a, N, M, b, \ldots, c,-M,-N, d, \ldots
$$

## Reidemeister Moves - III

$$
\begin{gathered}
\ldots,+a,+b, \ldots,-b,+c, \ldots,-c,-a, \ldots \\
\ldots \\
\ldots,+b,+c, \ldots,+a,-b, \ldots,-a,-c, \ldots
\end{gathered}
$$

## Braids

## Braids

## Seifertview / Knotweaver




## Knots $\leftrightarrow$ Braids



## Vogel Moves

## [Yamada, 1987], [Vogel, 1990]

All incoherently oriented Seifert circles can be removed by
carrying out Vogel moves. Once this is done, the braid word can easily be read off.
(0) ©

$$
\begin{array}{ll}
00 & 0 \\
00 & 00
\end{array}
$$

$$
\begin{array}{ll}
0 & 0 \\
00 & 00
\end{array}
$$

$$
\begin{array}{ll}
0 & 0 \\
00 & 00
\end{array}
$$

$$
\begin{array}{ll}
0 & 0 \\
00 & 00
\end{array}
$$

# TU/e 

## Finding Incoherently Oriented Seifert Circles: Faces



Faces: [RI,2,

# TU/e 

## Finding Incoherently Oriented Seifert Circles: Faces



Faces: [RI,2,6,5]

# TU/e 

## Finding Incoherently Oriented Seifert Circles: Faces



Faces: [RI,2,6,5],[LI,2,

# TU/e 

## Finding Incoherently Oriented Seifert Circles: Faces



Faces: [RI,2,6,5],[LI,2]

# TU/e 

## Finding Incoherently Oriented Seifert Circles: Faces



Faces: [Ri,2,6,5],[LI,2],[R2,3,7,6],[L2,3,4,5,I],. .,,[R5,r]
/ department of mathematics and computer science

## The Vogel Move



## The Vogel Move



The Vogel Move


TU/e
technische universiteit eindhoven
Vogel Moves in Practice


## Vogel Moves in Practice



## Vogel Moves in Practice



# TU／e 

## Vogel Moves in Practice



## Reading the Braid Word



## Result



$$
-\mathrm{I},+2,-3,+4,+5,+\mathrm{I},-2,+6,+7,+3,
$$

$$
-4,-7,-6,-5 / \cdots+-++
$$

$\leftrightarrow \quad \mathrm{BabBBcBBAbC}$

## Conclusion

- Implementation of the Vogel algorithm
- Link between Knotweaver and Seifertview


## Conclusion

- Implementation of the Vogel algorithm
- Link between Knotweaver and Seifertview
- Future options:
- Smoother connection
- Multiple components
- Visualize Vogel algorithm in Knotweaver


## Questions?

