Conjugation in Groups of Lie type

Dan Roozemond

I7 January 2007

Contents

- Groups of Lie type
- Steinberg presentation
- Row reduction
- Conjugation
- Weighted Dynkin diagrams
- Conclusion

Groups of Lie type

Group of Lie type

G a reductive algebraic group over the field K.

Groups of Lie type

Group of Lie type

G a reductive algebraic group over the field K.

- Fix a maximal torus T of G,
- and let $\left(X, \Phi, Y, \Phi^{\star}\right)$ be its root datum,
- and W its Weyl group.

Steinberg presentation

Generators

- $x_{\alpha}(a)$, for $\alpha \in \Phi$ and $a \in K$,
- $\gamma \otimes t$, for $y \in Y$ and $t \in K^{*}$.

Steinberg presentation

Generators

- $x_{\alpha}(a)$, for $\alpha \in \Phi$ and $a \in K$,
- $y \otimes t$, for $y \in Y$ and $t \in K^{*}$.

Abbreviate:

- $n_{\alpha}=x_{\alpha}(\mathrm{I}) x_{-\alpha}(-\mathrm{I}) x_{\alpha}(\mathrm{I})$.

Steinberg presentation

Generators

- $x_{\alpha}(a)$, for $\alpha \in \Phi$ and $a \in K$,
- $y \otimes t$, for $y \in Y$ and $t \in K^{*}$.

Abbreviate:

- $n_{\alpha}=x_{\alpha}(\mathrm{I}) x_{-\alpha}(-\mathrm{I}) x_{\alpha}(\mathrm{I})$.

Subgroups:

- T, generated by $\gamma \otimes t$,
- N, generated by n_{α},
- U, generated by $x_{\alpha}(a)$, with $\alpha \in \Phi^{+}$,
- U^{-}, generated by $x_{\alpha}(a)$, with $\alpha \in \Phi^{-}$,
- B=TU.

Representations

Fix a rational representation

$$
\rho: G \rightarrow \mathrm{GL}(V)
$$

which is a G -module by

$$
v g:=v \rho(g)
$$

Representations

Fix a rational representation

$$
\rho: G \rightarrow \mathrm{GL}(V),
$$

which is a G-module by

$$
v g:=v \rho(g)
$$

Weights :

$$
V_{\mu}=\left\{v \in V \mid v(\gamma \otimes t)=t^{\langle\mu, \gamma\rangle} v \text { for all } \gamma \in Y, t \in K^{*}\right\}
$$

now $V=\bigoplus V_{\mu}$.

Weight Base

Definitions:

- n is the rank of the root system of G,
- $\delta: G \rightarrow G: x_{\alpha}(a) \mapsto x_{-\alpha}(-a)^{-1}$,
- $I \subseteq\{\mathrm{I}, \ldots, n\}: W_{I}=\left\langle n_{\alpha_{i}} \mid i \in I\right\rangle$,
- "Levi complement": $L_{I}=B W_{I} B \cap B^{\delta} W_{I}^{\delta} B^{\delta}$.

Weight Base

Definitions:

- n is the rank of the root system of G,
- $\delta: G \rightarrow G: x_{\alpha}(a) \mapsto x_{-\alpha}(-a)^{-1}$,
- $I \subseteq\{\mathrm{I}, \ldots, n\}: W_{I}=\left\langle n_{\alpha_{i}} \mid i \in I\right\rangle$,
- "Levi complement": $L_{I}=B W_{I} B \cap B^{\delta} W_{I}^{\delta} B^{\delta}$.

Calculating a weight base

(Cohen, Murray, Taylor, 2003)
In: Reductive algebraic group G over K, Highest weight representation $\rho: G \rightarrow \mathrm{GL}(V)$,
Out: $\quad \lambda_{\mathrm{I}}, \ldots, \lambda_{k} \in V, J_{\mathrm{I}}, \ldots, J_{k} \subseteq\{\mathrm{I}, \ldots, n\}$, such that $G=L_{J_{\mathrm{I}}} \geq L_{J_{2}} \geq \ldots \geq L_{J_{k+1}}=T$, and λ_{i} is a highest weight for $L_{J_{i}}$ acting on V.

Original

Row and column reduction

(Cohen, Murray, Taylor, 2003)
In: Reductive algebraic group G over K, Representation $\rho: G \rightarrow \mathrm{GL}(V)$, $A \in \rho(G)$.
Out: $\quad g \in G$ such that $A=\rho(g)$.
Algorithm: A generalization of row and column reduction.

For vectors (I)

Row reduction for vectors (I)

In: Reductive algebraic group G over K, Representation $\rho: G \rightarrow \mathrm{GL}(V)$, $\left\{z_{\mathrm{I}}, \ldots, z_{q}\right\} \subseteq V$,
Out: $\quad g \in G$ such that, for all $i \in\{\mathrm{I}, \ldots, q\}$:

$$
z_{i} \mathrm{~g}^{-\mathrm{I}} \in \bigoplus_{\mu \succeq \lambda_{i}} V_{\mu}
$$

Into Borel

Conjugation into the Borel subgroup

In: Reductive algebraic group G over K, c a semisimple element of G,
Out: $\quad d \in B, a \in G$ such that $d=c^{a}$

Into Borel

Conjugation into the Borel subgroup

In: Reductive algebraic group G over K, c a semisimple element of G,
Out: $d \in B, a \in G$ such that $d=c^{a}$
Sketch of the algorithm:

1. Compute centraliser \mathfrak{c} of c in the Lie algebra \mathfrak{g},
2. Compute splitting Cartan subalgebra \mathfrak{h} contained in \mathfrak{c},
3. Write down basis of \mathfrak{g} with respect to \mathfrak{h},
4. Row reduce some entries of this basis, obtaining $g \in G$,
5. $\mathrm{g}^{-\mathrm{I}}$ does the job.

Into Borel: Example

We consider A_{3} over \mathbb{F}_{59}.

$$
c=\left(\begin{array}{cccc}
9 & \mathrm{I} & 53 & 8 \\
42 & 0 & 8 & 44 \\
48 & 0 & 7 & 23 \\
\mathrm{I} 2 & \mathrm{I} & 23 & 8
\end{array}\right)
$$

Into Borel: Example

We consider A_{3} over \mathbb{F}_{59}.

$$
c=\left(\begin{array}{cccc}
9 & \mathrm{I} & 53 & 8 \\
42 & 0 & 8 & 44 \\
48 & 0 & 7 & 23 \\
\mathrm{I} 2 & \mathrm{I} & 23 & 8
\end{array}\right)
$$

- Centraliser is 5 dimensional over \mathbb{F}_{59},

Into Borel: Example

We consider A_{3} over \mathbb{F}_{59}.

$$
c=\left(\begin{array}{cccc}
9 & \mathrm{I} & 53 & 8 \\
42 & 0 & 8 & 44 \\
48 & 0 & 7 & 23 \\
\mathrm{I} 2 & \mathrm{I} & 23 & 8
\end{array}\right)
$$

- Centraliser is 5 dimensional over \mathbb{F}_{59},
- Cartan Subalgebra is 3 dimensional over \mathbb{F}_{59}^{4},

Into Borel: Example

We consider A_{3} over \mathbb{F}_{59}.

$$
c=\left(\begin{array}{cccc}
9 & \mathrm{I} & 53 & 8 \\
42 & 0 & 8 & 44 \\
48 & 0 & 7 & 23 \\
\mathrm{I} 2 & \mathrm{I} & 23 & 8
\end{array}\right)
$$

- Centraliser is 5 dimensional over \mathbb{F}_{59},
- Cartan Subalgebra is 3 dimensional over \mathbb{F}_{59}^{4},
- We row reduce:

$$
\left(\begin{array}{ccccccccccccccc}
4 & 25 & 32 & 18 & 23 & 5 & 35 & 39 & 9 & 54 & 52 & 44 & 20 & 29 & 52 \\
55 & 34 & 0 & 4 \mathrm{I} & 0 & 2 & 49 & 17 & 24 & 30 & 9 & 0 & 57 & 47 & 42
\end{array}\right)
$$

Into Borel: Example

We consider A_{3} over \mathbb{F}_{59}.

- And find

$$
\mathrm{g}^{-\mathrm{I}}=\left(\begin{array}{cccc}
0 & 0 & 0 & 58 \\
0 & 0 & \mathrm{I} & 2 \mathrm{I} \\
0 & 58 & 50 & 25 \\
\mathrm{I} & 5 \mathrm{I} & 30 & 53
\end{array}\right)
$$

Into Borel: Example

We consider A_{3} over \mathbb{F}_{59}.

- And find

$$
g^{-\mathrm{I}}=\left(\begin{array}{cccc}
0 & 0 & 0 & 58 \\
0 & 0 & \mathrm{I} & 2 \mathrm{I} \\
0 & 58 & 50 & 25 \\
\mathrm{I} & 5 \mathrm{I} & 30 & 53
\end{array}\right)
$$

- Now

$$
c^{\prime}=g c g^{-\mathrm{I}}=\left(\begin{array}{cccc}
25 & 0 & 0 & 0 \\
7 & 28 & 0 & 0 \\
24 & 44 & 50 & 0 \\
8 & \mathrm{I} & 0 & 50
\end{array}\right)
$$

Towards the standard torus

$$
c^{\prime}=\left(\begin{array}{cccc}
25 & 0 & 0 & 0 \\
7 & 28 & 0 & 0 \\
24 & 44 & 50 & 0 \\
8 & \mathrm{I} & 0 & 50
\end{array}\right)
$$

- Recall $\delta: G \rightarrow G: x_{\alpha}(a) \mapsto x_{-\alpha}(-a)^{-1}$,

Towards the standard torus

$$
c^{\prime}=\left(\begin{array}{cccc}
25 & 0 & 0 & 0 \\
7 & 28 & 0 & 0 \\
24 & 44 & 50 & 0 \\
8 & \mathrm{I} & 0 & 50
\end{array}\right)
$$

- Recall $\delta: G \rightarrow G: x_{\alpha}(a) \mapsto x_{-\alpha}(-a)^{-1}$,
- Now

$$
c^{\prime \delta}=\left(\begin{array}{cccc}
26 & 36 & 3 \mathrm{I} & 53 \\
0 & \mathrm{I} 9 & \mathrm{I} 2 & 48 \\
0 & 0 & \mathrm{I} 3 & 0 \\
0 & 0 & 0 & 13
\end{array}\right)
$$

- So we would like to do the same algorithm again...

Towards the standard torus

$$
c^{\prime}=\left(\begin{array}{cccc}
25 & 0 & 0 & 0 \\
7 & 28 & 0 & 0 \\
24 & 44 & 50 & 0 \\
8 & \mathrm{I} & 0 & 50
\end{array}\right)
$$

- Recall $\delta: G \rightarrow G: x_{\alpha}(a) \mapsto x_{-\alpha}(-a)^{-1}$,
- Now

$$
c^{\prime \delta}=\left(\begin{array}{cccc}
26 & 36 & 3 \mathrm{I} & 53 \\
0 & \mathrm{I} 9 & \mathrm{I} 2 & 48 \\
0 & 0 & \mathrm{I} 3 & 0 \\
0 & 0 & 0 & \mathrm{I} 3
\end{array}\right)
$$

- So we would like to do the same algorithm again...
- but that will not work.

For vectors (II)

Row reduction for vectors (II)

In: Reductive algebraic group G over K, Representation $\rho: G \rightarrow \mathrm{GL}(V)$, $\left\{z_{\mathrm{I}}, \ldots, z_{q}\right\} \subseteq V$,
Out: $\quad g \in G$ such that, for all $i \in\{\mathrm{I}, \ldots, q\}$:

$$
z_{i} g^{-\mathrm{I}} \in \bigoplus_{\mu \succeq \lambda_{i}} V_{\mu}
$$

For vectors (II)

Row reduction for vectors (II)

In: Reductive algebraic group G over K, Representation $\rho: G \rightarrow \mathrm{GL}(V)$, $\left\{z_{\mathrm{I}}, \ldots, z_{q}\right\} \subseteq V$,
Out: $\quad g \in G$ such that, for all $i \in\{\mathrm{I}, \ldots, q\}$:

$$
\begin{gathered}
z_{i} \mathrm{~g}^{-\mathrm{I}} \in \bigoplus_{\mu \succeq \lambda_{i}} V_{\mu} \\
\text { and, for } i \in\{\mathrm{I}, \ldots, k\}, j \in\{\mathrm{I}, \ldots, i-\mathrm{I}\}, \\
z_{i} \cdot v_{i} \neq \mathrm{o} \text { and } z_{i} \cdot v_{j}=\mathrm{o} \Rightarrow \mathrm{~g} \in B^{\delta} .
\end{gathered}
$$

Into standard torus

Conjugation into the standard torus

In: Reductive algebraic group G over K, c a semisimple element of G,
Out: $\quad h \in T, a \in G$ such that $h=c^{a}$

Into standard torus

Conjugation into the standard torus

In: Reductive algebraic group G over K, c a semisimple element of G,
Out: $\quad h \in T, a \in G$ such that $h=c^{a}$
Sketch of the algorithm:

1. Compute $c^{\prime} \in B$,
2. Conjugate $c^{\prime \delta}$ into B as before, but use new row reduction,
3. Compose results.

Into standard torus: Example

- Now

$$
c^{\prime \delta}=\left(\begin{array}{cccc}
26 & 36 & 3 \mathrm{I} & 53 \\
0 & \text { I9 } & \text { I2 } & 48 \\
0 & 0 & 13 & 0 \\
0 & 0 & 0 & 13
\end{array}\right)
$$

Into standard torus: Example

- Now

$$
c^{\prime \delta}=\left(\begin{array}{cccc}
26 & 36 & 3 \mathrm{I} & 53 \\
0 & \text { I9 } & \text { I2 } & 48 \\
0 & 0 & \mathrm{I} 3 & 0 \\
0 & 0 & 0 & \mathrm{I} 3
\end{array}\right)
$$

- We row reduce:

$$
\left(\begin{array}{ccccccccccccccc}
\mathrm{I} & \mathrm{I} 4 & \mathrm{O} & \mathrm{O} & 0 & 45 & 34 & \mathrm{I} 9 & \mathrm{I} 3 & 25 & 0 & 0 & 0 & 54 & \mathrm{I} 9 \\
9 & 8 & 42 & 0 & 57 & 38 & \mathrm{I} & 58 & 58 & 0 & 0 & \mathrm{I} 5 & 0 & 22 & 0
\end{array}\right)
$$

Into standard torus: Example

- Now

$$
c^{\prime \delta}=\left(\begin{array}{cccc}
26 & 36 & 3 \mathrm{I} & 53 \\
0 & \text { I9 } & \text { I2 } & 48 \\
0 & 0 & \mathrm{I} 3 & 0 \\
0 & 0 & 0 & \mathrm{I} 3
\end{array}\right)
$$

- We row reduce:

$$
\left(\begin{array}{ccccccccccccccc}
\mathrm{I} & \mathrm{I} 4 & \mathrm{O} & 0 & 0 & 45 & 34 & \mathrm{I} 9 & \mathrm{I} 3 & 25 & 0 & 0 & 0 & 54 & 19 \\
9 & 8 & 42 & 0 & 57 & 38 & \mathrm{I} & 58 & 58 & 0 & 0 & \mathrm{I} 5 & 0 & 22 & 0
\end{array}\right)
$$

- And obtain g^{\prime}, such that

$$
g^{\prime} c^{1 \delta} g^{\prime-1}=\left(\begin{array}{cccc}
33 & \circ & 0 & 0 \\
0 & 40 & 0 & 0 \\
0 & \circ & 46 & 0 \\
0 & \circ & 0 & 46
\end{array}\right)
$$

Weighted Dynkin Diagrams

"Definition"

In: Lie algebra \mathfrak{g}, with simple root system Δ, $e \in \mathfrak{g}$ nonzero nilpotent,
Out: $\quad p_{\alpha} \in\{0, \mathbf{I}, 2\}, \alpha \in \Delta$.

Weighted Dynkin Diagrams

"Definition"

In: Lie algebra \mathfrak{g}, with simple root system Δ, $e \in \mathfrak{g}$ nonzero nilpotent,
Out: $\quad p_{\alpha} \in\{0, \mathbf{I}, 2\}, \alpha \in \Delta$.

Why weighted Dynkin diagrams are useful

Theorem: e and e^{\prime} have the same weighted Dynkin diagram if and only if they are in the same G-orbit.

Computing Weighted Dynkin Diagrams

Let $e \in \mathfrak{g}$, and $\langle e, h, f\rangle$ the $\mathfrak{s l}_{2}$ subalgebra containing e.

Computing

Computing the weighted Dynkin diagram for e is easy if h in the standard torus t .

TU/e

Computing Weighted Dynkin Diagrams

Example in MAGMA (I)

> G := GroupOfLieType("D4", Rationals());
> rho,L : = AdjointRepresentation (G);
> rhoL := AdjointRepresentation(L);
$>$
$>$ e1 := L.1;
> lbl1 := WeightedDynkinDiagramLabels(e1);
> lbl1;
$[0,1,0,0]$

Computing Weighted Dynkin Diagrams

Example in MAGMA (II)

> lbl1;
[0, 1, 0, 0]
$>\mathrm{c}:=\mathrm{elt}\langle\mathrm{G}| \mathrm{[}$ (<1,3>, <2,3>, 2, 3 *] >; c;
x2(3) x5(9) x1(3) n2 n3
> C := ChangeRing(rho(c), BaseRing(L));
$>$
$>$ e2 := L! (e1*C);
> e2;
(-3 00010 0000$)$
$>$
> lbl2 := WeightedDynkinDiagramLabels(e2);
> lbl2;
$[0,1,0,0$]

Conclusion

- New variants of row reduction,
- Application: Conjugation,
- Application: Weighted Dynkin diagrams.

Future Research

- Small characteristic cases,
- Fix bugs,
- Find conjugators for subalgebras in the same orbit,

Questions?

