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Groups of Lie type

Group of Lie type
G a reductive algebraic group over the field K.

I Fix a maximal torus T of G,
I and let (X ,Φ,Y ,Φ?) be its root datum,
I andW its Weyl group.
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Steinberg presentation

Generators
I xα(a), for α ∈ Φ and a ∈ K,
I y⊗ t, for y ∈ Y and t ∈ K∗.

Abbreviate:
I nα = xα(1)x−α(−1)xα(1).

Subgroups:
I T , generated by y⊗ t,
I N, generated by nα,
I U, generated by xα(a), with α ∈ Φ+,
I U−, generated by xα(a), with α ∈ Φ−,
I B = TU.
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Representations

Fix a rational representation

ρ : G→ GL(V),

which is a G -module by

vg := vρ(g).

Weights :

Vµ = {v ∈ V | v(y⊗ t) = t〈µ,y〉v for all y ∈ Y , t ∈ K∗},

now V =
⊕

Vµ.
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Weight Base
Definitions:

I n is the rank of the root system of G,
I δ : G→ G: xα(a) 7→ x−α(−a)−1,
I I ⊆ {1, . . . , n}: WI = 〈nαi | i ∈ I〉,
I “Levi complement”: LI = BWIB ∩ BδWδ

I B
δ.

Calculating a weight base
(Cohen, Murray, Taylor, 2003)
In: Reductive algebraic group G over K,

Highest weight representation ρ : G→ GL(V),
Out: λ1, . . . , λk ∈ V , J1, . . . , Jk ⊆ {1, . . . , n},

such that G = LJ1 ≥ LJ2 ≥ . . . ≥ LJk+1 = T ,
and λi is a highest weight for LJi acting on V .
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Original

Row and column reduction
(Cohen, Murray, Taylor, 2003)
In: Reductive algebraic group G over K,

Representation ρ : G→ GL(V),
A ∈ ρ(G).

Out: g ∈ G such that A = ρ(g).
Algorithm: A generalization of row and column reduction.
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For vectors (I)

Row reduction for vectors (I)

In: Reductive algebraic group G over K,
Representation ρ : G→ GL(V),
{z1, . . . , zq} ⊆ V ,

Out: g ∈ G such that, for all i ∈ {1, . . . , q} :
zig−1 ∈

⊕
µ�λi

Vµ.

8 of 24



12

/ department of mathematics and computer science

Groups of Lie type Row Reduction Conjugation Weighted Dynkin Diagrams Conclusion

Into Borel

Conjugation into the Borel subgroup

In: Reductive algebraic group G over K,
c a semisimple element of G,

Out: d ∈ B, a ∈ G such that d = ca

Sketch of the algorithm:

1. Compute centraliser c of c in the Lie algebra g,

2. Compute splitting Cartan subalgebra h contained in c,

3. Write down basis of g with respect to h,

4. Row reduce some entries of this basis, obtaining g ∈ G,

5. g−1 does the job.
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Into Borel: Example

We consider A3 over F59.
I

c =

 9 1 53 8
42 0 8 44
48 0 7 23
12 1 23 8



I Centraliser is 5 dimensional over F59,
I Cartan Subalgebra is 3 dimensional over F4

59,
I We row reduce:(

4 25 32 18 23 5 35 39 9 54 52 44 20 29 52
55 34 0 41 0 2 49 17 24 30 9 0 57 47 42

)
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Into Borel: Example

We consider A3 over F59.
I And find

g−1 =

 0 0 0 58
0 0 1 21
0 58 50 25
1 51 30 53



I Now

c′ = gcg−1 =

 25 0 0 0
7 28 0 0
24 44 50 0
8 1 0 50


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Towards the standard torus

I

c′ =

 25 0 0 0
7 28 0 0
24 44 50 0
8 1 0 50

 ,

I Recall δ : G→ G: xα(a) 7→ x−α(−a)−1,

I Now

c′δ =

 26 36 31 53
0 19 12 48
0 0 13 0
0 0 0 13


I So we would like to do the same algorithm again...
I but that will not work.
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For vectors (II)

Row reduction for vectors (II)

In: Reductive algebraic group G over K,
Representation ρ : G→ GL(V),
{z1, . . . , zq} ⊆ V ,

Out: g ∈ G such that, for all i ∈ {1, . . . , q} :
zig−1 ∈

⊕
µ�λi

Vµ

and, for i ∈ {1, . . . , k}, j ∈ {1, . . . , i− 1},
zi � vi 6= 0 and zi � vj = 0⇒ g ∈ Bδ.
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Into standard torus

Conjugation into the standard torus

In: Reductive algebraic group G over K,
c a semisimple element of G,

Out: h ∈ T, a ∈ G such that h = ca

Sketch of the algorithm:

1. Compute c′ ∈ B,

2. Conjugate c′δ into B as before, but use new row reduction,

3. Compose results.
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Into standard torus: Example

I Now

c′δ =

 26 36 31 53
0 19 12 48
0 0 13 0
0 0 0 13



I We row reduce:(
1 14 0 0 0 45 34 19 13 25 0 0 0 54 19
9 8 42 0 57 38 1 58 58 0 0 15 0 22 0

)
I And obtain g′, such that

g′c′δg′−1 =

 33 0 0 0
0 40 0 0
0 0 46 0
0 0 0 46


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Weighted Dynkin Diagrams

“Definition”

In: Lie algebra g,
with simple root system ∆,
e ∈ g nonzero nilpotent,

Out: pα ∈ {0, 1, 2}, α ∈ ∆.

Why weighted Dynkin diagrams are useful

Theorem: e and e′ have the same weighted Dynkin diagram if and
only if they are in the same G-orbit.
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Computing Weighted Dynkin Diagrams

Let e ∈ g, and 〈e, h, f 〉 the sl2 subalgebra containing e.

Computing
Computing the weighted Dynkin diagram for e is easy if h in the
standard torus t.
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Computing Weighted Dynkin Diagrams

Example inMAGMA (I)
> G := GroupOfLieType("D4", Rationals());
> rho,L := AdjointRepresentation(G);
> rhoL := AdjointRepresentation(L);
>
> e1 := L.1;
> lbl1 := WeightedDynkinDiagramLabels(e1);
> lbl1;
[ 0, 1, 0, 0 ]
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Computing Weighted Dynkin Diagrams

Example inMAGMA (II)
> lbl1;
[ 0, 1, 0, 0 ]
> c := elt<G | [* <1,3>, <2,3>, 2, 3 *] >; c;
x2(3) x5(9) x1(3) n2 n3
> C := ChangeRing(rho(c), BaseRing(L));
>
> e2 := L!(e1*C);
> e2;
(-3 0 0 1 0 ....... 0 0 0)
>
> lbl2 := WeightedDynkinDiagramLabels(e2);
> lbl2;
[ 0, 1, 0, 0 ]
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Conclusion

I New variants of row reduction,
I Application: Conjugation,
I Application: Weighted Dynkin diagrams.
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Future Research

I Small characteristic cases,
I Fix bugs,
I Find conjugators for subalgebras in the same orbit,
I ...
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Questions?
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