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Lie Groups: Introduction - I

A Lie group is a group that also has the structure of a differen-
tiable manifold, such that the maps of multiplication and inversion
are differentiable maps.
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Lie Groups: Introduction - II

Restrict to connected reductive complex Lie groups:

• Nice Classification Theory

• Nice Representation Theory
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Lie Groups: Classification Theory - I

Bourbaki, 1975: if g is a connected reductive complex Lie group:

g′ = ⊗

 simply connected semisimple complex grp ⊗

 s.c. simple grp
...

s.c. simple grp
complex torus

and
g = ξ(g′), ξ a homomorphism with finite kernel.
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Lie Groups: Classification Theory - II

Simply connected simple Lie groups:

• Classical types: An, Bn, Cn, Dn,

• Exceptional types: F4, G2, E6, E7, E8.
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Lie Groups: Classification Theory - III

We restrict to

g = ⊗

 simply connected semisimple complex grp ⊗

 s.c. simple grp
...

s.c. simple grp
complex torus

.

Then, e.g.
g = A4C3B1T2.
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Lie Groups: Weights - I

Fix a maximal torus in g
T = S ⊗ T ′

Lie rank:
rank(g) := dim(T )

Weights: elements of Λ(T ) = algebraic group morphisms T → C?.
Weights: isomorphism classes of 1-dimensional T -modules.
Weights: elements of Cr.
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Representations - I
•

ρ : g → GL(V ), ρ a Lie group homomorphism.

• Equivalently, we specify a left action of g on V , such that each map

v 7→ x.v, v ∈ V, x ∈ g, v 7→ ρ(x).v

is linear and depends on a differentiable way on x. Then V is called a
g-module.

• V is called irreducible if: g.V ′ = V ′ ⇒ V ′ = 0 or V ′ = V .



12

/ department of mathematics and computer scienceJJ J N I II 16/44JJ J N I II 16/44

Representations - I
•

ρ : g → GL(V ), ρ a Lie group homomorphism.

• Equivalently, we specify a left action of g on V , such that each map

v 7→ x.v, v ∈ V, x ∈ g, v 7→ ρ(x).v

is linear and depends on a differentiable way on x. Then V is called a
g-module.

• V is called irreducible if: g.V ′ = V ′ ⇒ V ′ = 0 or V ′ = V .



12

/ department of mathematics and computer scienceJJ J N I II 17/44JJ J N I II 17/44

Representations - I
•

ρ : g → GL(V ), ρ a Lie group homomorphism.

• Equivalently, we specify a left action of g on V , such that each map

v 7→ x.v, v ∈ V, x ∈ g, v 7→ ρ(x).v

is linear and depends on a differentiable way on x. Then V is called a
g-module.

• V is called irreducible if: g.V ′ = V ′ ⇒ V ′ = 0 or V ′ = V .



12

/ department of mathematics and computer scienceJJ J N I II 18/44JJ J N I II 18/44

Lie Groups: Weights - II / Representations - II

The torus T is reductive and Abelian, so it is diagonalisable in
any g-representation,

so

If M is a g-module, then the restriction of M to T is a direct
sum of 1-dimensional T -modules, and therefore described by a set
of weights with multiplicities.



12

/ department of mathematics and computer scienceJJ J N I II 19/44JJ J N I II 19/44

Lie Groups: Weights - III / Representations - III

• Adjoint representation of g: its representation on the Lie algebra of g,

• Root system Φ: Non-zero weights occurring in the adjoint representation,

• Fundamental roots: {α1, . . . , αs} ⊂ Φ.

Partial ordering of weights:

v ≺ v′ ⇔ v − v′ =

s∑
i=1

κiαi, κi ∈ N0.
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Representations - III

Two facts:

• Every g-module decomposes as a direct sum of irreducible modules,

• Irreducible representations⇔ Λ+(T ): dominant weights:

Assign to each irreducible module its highest weight.

• Representations⇔ Decomposition Polynomials.
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Representations - IV: Summary

Module LiE
m

Irreducible Modules ⊕ Irreducible
m m

Λ(T ): Weights
and Multiplicities

. . . Character
Polynomial

m m
Λ+(T ):

Dominant Weights
and Multiplicities

. . .
Dominant
Character
Polynomial

m m
Unique

Highest Weight
Highest Weights
and Multiplicities

Decomposition
Polynomial



12

/ department of mathematics and computer scienceJJ J N I II 24/44JJ J N I II 24/44

Representations - IV: Summary

Module LiE
m

Irreducible Modules ⊕ Irreducible
m m

Λ(T ): Weights
and Multiplicities

. . . Character
Polynomial

m m
Λ+(T ):

Dominant Weights
and Multiplicities

. . .
Dominant
Character
Polynomial

m m
Unique

Highest Weight
Highest Weights
and Multiplicities

Decomposition
Polynomial



12

/ department of mathematics and computer scienceJJ J N I II 25/44JJ J N I II 25/44

Representations - IV: Summary

Module LiE
m

Irreducible Modules ⊕ Irreducible
m m

Λ(T ): Weights
and Multiplicities

. . . Character
Polynomial

m m
Λ+(T ):

Dominant Weights
and Multiplicities

. . .
Dominant
Character
Polynomial

m m
Unique

Highest Weight
Highest Weights
and Multiplicities

Decomposition
Polynomial



12

/ department of mathematics and computer scienceJJ J N I II 26/44JJ J N I II 26/44

Example: Tensor - I
> A2 := RootDatum("A2" : Isogeny := "SC");
> L := LieAlgebra(A2, Rationals());
> _,_,T := StandardBasis(L);
> rho := AdjointRepresentation(L);
> V := VectorSpace(Rationals(), 8);
/ * Now V is an L-module by v --> x.v = rho(x).v * /
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Example: Tensor - II
> rho := AdjointRepresentation(L);
> V := VectorSpace(Rationals(), 8);
/ * Now V is an L-module by v --> x.v = rho(x).v * /
> MT := [ Transpose(Matrix(rho(t))) : t in T ]; MT;

−1
1
−2

0
0

2
−1

1


,



−1
−2

1
0

0
−1

2
1
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Example: Tensor - III
> rho := AdjointRepresentation(L);
> V := VectorSpace(Rationals(), 8);
/ * Now V is an L-module by v --> x.v = rho(x).v * /
> MT := [ Transpose(Matrix(rho(t))) : t in T ]; MT;

−1
1
−2

0
0

2
−1

1


,



−1
−2

1
0

0
−1

2
1


⇒Weights are:

(−1,−1), (1,−2), (−2, 1), (0, 0), (0, 0), (2,−1), (−1, 2), (1, 1)
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Example: Tensor - IV

⇒Weights are:

(−1,−1), (1,−2), (−2, 1), (0, 0), (0, 0), (2,−1), (−1, 2), (1, 1)

⇒ Dominant weights are:

(0, 0) (twice) , (1, 1).
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Example: Tensor - V

Lie group g = A2:

• ρ1: Adjoint representation of g, dimension 8,

• ρ2: Irreducible Representation with highest weight (2, 0), dimension 6.

Tensoring these representations will give a representation of dimension 48.
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Example: Tensor - VI

Tensoring these representations will give a representation of dimension 48.
> rho1 := HighestWeightRepresentation(L, [1,1]);
> rho2 := HighestWeightRepresentation(L, [2,0]);
> MT := [ Transpose(TensorProduct(Matrix(rho1(t)),

Matrix(rho2(t)))) : t in T ] ;

Weights:
> { * Vector([(B[i] * m)[i] : m in MT]):i in [1..#B] * };
{ *

( 0 -1)^^2,
(-2 0)^^3,

...
( 0 -2)^^3,
(4 2)

* }
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Example: Tensor - VII
> drho1 := LieRepresentationDecomposition(A2, [1,1]);
> drho2 := LieRepresentationDecomposition(A2, [2,0]);
> dtp := Tensor(drho1, drho2);
> dtp:Maximal;
Highest weight decomposition of representation of:

A2: Simply connected root datum of dimension 2 of type A2
Weights: [

(3 1),
(0 1),
(2 0),
(1 2)

]
Multiplicities: [ 1, 1, 1, 1 ]

> Dim(dtp);
48
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Example: Tensor - VIII
> dtp:Maximal;
Highest weight decomposition of representation of:

A2: Simply connected root datum of dimension 2 of type A2
Weights: [

(3 1),
(0 1),
(2 0),
(1 2)

]
Multiplicities: [ 1, 1, 1, 1 ]

> Dim(dtp);
48
> [ Dim(LieRepresentationDecomposition(A2, w)) :

w in [[3,1],[0,1],[2,0],[1,2]] ];
[ 24, 3, 6, 15 ]



12

/ department of mathematics and computer scienceJJ J N I II 34/44JJ J N I II 34/44

LiE - I

• van Leeuwen, Cohen, Lisser, 1992

• Advantages:

– Specifically for Lie group computations,

–⇒ Extremely fast.

• Disadvantages:

– Specifically for Lie group computations,

– More or less unchanged since 2000,

– Not very customizable.
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LiE - II

1. Lie groups

2. Root systems

3. The Weyl group

4. Operations related to the Symmetric group

5. Representations

• Tensor

• Adams operator

• Alternating Weyl sum

• Symmetric / Alternating Tensor

• Branch / Collect

• ...
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Embedding LiE in Magma - I

• No black-box approach,

• Connected reductive complex Lie groups⇒ Root data,

• Existing functionality by Murray, Taylor, de Graaf, Haller,

• Focus on representations,

• First a package (intrinsics),

• Port critical parts to C.
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Embedding LiE in Magma - II: Timings

Tensoring two (non-irreducible) representations:
Group # Dims LiE Magma (package) Magma (C)
A3 10 360, 444 0.006 0.302 0.095
A3 10 100, 40 0.007 0.612 0.055
D5 10 175, 664 0.005 0.299 0.104
E8 3 60760, 11625 0.020 6.823 0.370
E8 1 8192000, 34537472000 0.100 n/a 4.660
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Conclusion & Todo

Done:

• All functionality of LiE in a Magma package,

• Created Magma type for decomposition polynomials,

• Ported some speed-critical functions in C.

Todo:

• Port a few more speed-critical functions to C,

• Speed up existing DominantCharacter functionality,

• Write documentation,

• Work on maximal subgroups of algebraic groups...
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Questions?


