Combinatorics with

 Representations or
Embedding LiE in Magma

Dan Roozemond

27 July 2006

TU/e

Contents

- Embedding LiE in Magma

Contents

- Lie Groups
- Representations
- Example: Tensor
- LiE
- Embedding LiE in Magma

Contents

- Lie Groups
- Representations
- Example: Tensor
- LiE
- Embedding LiE in Magma
- Conclusion \& Todo

Lie Groups: Introduction - I

A Lie group is a group that also has the structure of a differentiable manifold, such that the maps of multiplication and inversion are differentiable maps.

Lie Groups: Introduction - II

Restrict to connected reductive complex Lie groups:

- Nice Classification Theory
- Nice Representation Theory

Lie Groups: Classification Theory - I

Bourbaki, 1975 : if g is a connected reductive complex Lie group:
$g^{\prime}=\otimes\left\{\begin{array}{l}\text { simply connected semisimple complex grp } \\ \text { complex torus }\end{array}\right.$
and

$$
g=\xi\left(g^{\prime}\right), \xi \text { a homomorphism with finite kernel. }
$$

Lie Groups: Classification Theory - I

Bourbaki, 1975 : if g is a connected reductive complex Lie group:

$$
g=\xi\left(g^{\prime}\right), \xi \text { a homomorphism with finite kernel. }
$$

Lie Groups: Classification Theory - II

Simply connected simple Lie groups:

- Classical types: $A_{n}, B_{n}, C_{n}, D_{n}$,
- Exceptional types: $F_{4}, G_{2}, E_{6}, E_{7}, E_{8}$.

Lie Groups: Classification Theory - III

We restrict to
$g=\otimes\left\{\begin{array}{l}\text { simply connected semisimple complex grp } \otimes\left\{\begin{array}{c}\text { s.c. simple grp } \\ \vdots \\ \text { s.c. simple grp } \\ \text { complex torus }\end{array} \text { }\right.\end{array}\right.$
Then, e.g.

$$
g=A_{4} C_{3} B_{1} T_{2} .
$$

TU/e

Lie Groups: Weights - I

Fix a maximal torus in g

$$
T=S \otimes T^{\prime}
$$

TU/e

Lie Groups: Weights - I

Fix a maximal torus in g

$$
T=S \otimes T^{\prime}
$$

Lie rank:

$$
\operatorname{rank}(g):=\operatorname{dim}(T)
$$

Lie Groups: Weights - I

Fix a maximal torus in g

$$
T=S \otimes T^{\prime}
$$

Lie rank:

$$
\operatorname{rank}(g):=\operatorname{dim}(T)
$$

Weights: elements of $\Lambda(T)=$ algebraic group morphisms $T \rightarrow \mathbb{C}^{\star}$. Weights: isomorphism classes of 1-dimensional T-modules.

Lie Groups: Weights - I

Fix a maximal torus in g

$$
T=S \otimes T^{\prime}
$$

Lie rank:

$$
\operatorname{rank}(g):=\operatorname{dim}(T)
$$

Weights: elements of $\Lambda(T)=$ algebraic group morphisms $T \rightarrow \mathbb{C}^{\star}$. Weights: isomorphism classes of 1-dimensional T-modules. Weights: elements of \mathbb{C}^{r}.

TU/e

Representations - I

$$
\rho: g \rightarrow \mathrm{GL}(V), \quad \rho \text { a Lie group homomorphism. }
$$

Representations-I

$$
\rho: g \rightarrow \mathrm{GL}(V), \quad \rho \text { a Lie group homomorphism. }
$$

- Equivalently, we specify a left action of g on V, such that each map

$$
v \mapsto x . v, \quad v \in V, x \in g,
$$

is linear and depends on a differentiable way on x. Then V is called a g-module.

- V is called irreducible if: $g . V^{\prime}=V^{\prime} \Rightarrow V^{\prime}=0$ or $V^{\prime}=V$.

Representations-I

$$
\rho: g \rightarrow \mathrm{GL}(V), \quad \rho \text { a Lie group homomorphism. }
$$

- Equivalently, we specify a left action of g on V, such that each map

$$
v \mapsto x \cdot v, \quad v \in V, x \in g, \quad v \mapsto \rho(x) . v
$$

is linear and depends on a differentiable way on x. Then V is called a g-module.

- V is called irreducible if: $g . V^{\prime}=V^{\prime} \Rightarrow V^{\prime}=0$ or $V^{\prime}=V$.

Lie Groups: Weights - II / Representations - II

The torus T is reductive and Abelian, so it is diagonalisable in any g-representation,

SO
If M is a g-module, then the restriction of M to T is a direct sum of 1 -dimensional T-modules, and therefore described by a set of weights with multiplicities.

Lie Groups: Weights - III / Representations - III

- Adjoint representation of g : its representation on the Lie algebra of g,
- Root system Φ : Non-zero weights occurring in the adjoint representation,
- Fundamental roots: $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\} \subset \Phi$.

Lie Groups: Weights - III / Representations - III

- Adjoint representation of g : its representation on the Lie algebra of g,
- Root system Φ : Non-zero weights occurring in the adjoint representation,
- Fundamental roots: $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\} \subset \Phi$.

Partial ordering of weights:

$$
v \prec v^{\prime} \Leftrightarrow v-v^{\prime}=\sum_{i=1}^{s} \kappa_{i} \alpha_{i}, \quad \kappa_{i} \in \mathbb{N}_{0}
$$

Representations - III

Two facts:

- Every g-module decomposes as a direct sum of irreducible modules,
- Irreducible representations $\Leftrightarrow \Lambda^{+}(T)$: dominant weights:

Assign to each irreducible module its highest weight.

Representations - III

Two facts:

- Every g-module decomposes as a direct sum of irreducible modules,
- Irreducible representations $\Leftrightarrow \Lambda^{+}(T)$: dominant weights:

Assign to each irreducible module its highest weight.

- Representations \Leftrightarrow Decomposition Polynomials.

TU/e

 Representations - IV: Summary

 Representations - IV: Summary}

Irreducible Modules
\Downarrow
$\Lambda(T)$: Weights
and Multiplicities
§
$\Lambda^{+}(T):$
Dominant Weights
and Multiplicities
§
Unique
Highest Weight

Representations - IV: Summary

Representations - IV: Summary

Irreducible Modules §	Module I Irreducible \Downarrow	LiE
$\Lambda(T)$: Weights and Multiplicities I	I	Character Polynomial
$\Lambda^{+}(T):$ Dominant Weights and Multiplicities §	I	Dominant Character Polynomial
Unique Highest Weight	Highest Weights and Multiplicities	Decomposition Polynomial

Example: Tensor - I

$>$ A2 $:=$ RootDatum ("A2" : Isogeny $:=$ "SC") ;
$>\mathrm{L}:=$ LieAlgebra(A2, Rationals());
$>$ _r_, $\mathrm{T}:=$ StandardBasis (L) ;
$>$ rho $:=$ AdjointRepresentation (L) ;
$>\mathrm{V}:=$ VectorSpace (Rationals () , 8) ;
$/ \star$ Now V is an L-module by $V-->x \cdot v=r h o(x) \cdot v * /$

Example: Tensor - II

> rho := AdjointRepresentation(L);
> V := VectorSpace(Rationals(), 8);
/* Now V is an L-module by $v-->x . v=r h o(x) \cdot v * /$
$>\operatorname{MT}:=[$ Transpose(Matrix(rho(t))) : t in T]; MT;

$$
\left(\begin{array}{cccccccc}
-1 & & & & & & & \\
& 1 & & & & & & \\
& & -2 & & & & & \\
& & & 0 & & & & \\
& & & & 0 & & & \\
& & & & & 2 & & \\
& & & & & & -1 & \\
& & & & & & & \\
& & & & & & & 1
\end{array}\right),\left(\begin{array}{ccccccc}
-1 & & & & & & \\
& -2 & & & & & \\
& & 1 & & & & \\
& & & 0 & & & \\
& & & & 0 & & \\
& & & & & -1 & \\
& & & & & & 2
\end{array}\right)
$$

Example: Tensor - III

> rho := AdjointRepresentation(L);
> V := VectorSpace(Rationals(), 8);
/* Now V is an L-module by $v-->x . v=r h o(x) \cdot v * /$
$>\operatorname{MT}:=[$ Transpose(Matrix(rho(t))) : t in T]; MT;
\Rightarrow Weights are:

$$
(-1,-1),(1,-2),(-2,1),(0,0),(0,0),(2,-1),(-1,2),(1,1)
$$

Example: Tensor - IV

\Rightarrow Weights are:

$$
(-1,-1),(1,-2),(-2,1),(0,0),(0,0),(2,-1),(-1,2),(1,1)
$$

\Rightarrow Dominant weights are:

$$
(0,0) \text { (twice) , }(1,1) .
$$

Example: Tensor - V

Lie group $g=A_{2}$:

- ρ_{1} : Adjoint representation of g, dimension 8 ,
- ρ_{2} : Irreducible Representation with highest weight (2,0), dimension 6.

Tensoring these representations will give a representation of dimension 48 .

Example: Tensor - VI

Tensoring these representations will give a representation of dimension 48. > rhol := HighestWeightRepresentation(L, [1,1]);
> rho2 := HighestWeightRepresentation(L, [2,0]);
> MT := [Transpose(TensorProduct (Matrix(rhol(t)), Matrix(rho2(t)))) : t in T] ;

Weights:
> \{* Vector([(B[i]*m)[i] : m in MT]):i in [1..\#B] *\};
\{*
$\left(\begin{array}{ll}0 & -1)^{\wedge} \wedge 2, \\ \hline\end{array}\right.$
$\left(\begin{array}{ll}-2 & 0\end{array}\right)^{\wedge} 3$,
($0-2)^{\wedge \wedge}$,
(4)
*

Example: Tensor - VII

> drho1 := LieRepresentationDecomposition(A2, [1, 1]);
> drho2 := LieRepresentationDecomposition(A2, [2,0]);
$>$ dtp := Tensor (drho1, drho2);
> dtp:Maximal;
Highest weight decomposition of representation of:
A2: Simply connected root datum of dimension 2 of ty Weights: [
$\left(\begin{array}{ll}3 & 1\end{array}\right)$,
$\left(\begin{array}{ll}0 & 1\end{array}\right)$,
(2 0),
$\left(\begin{array}{ll}1 & 2\end{array}\right)$
]
Multiplicities: [1, 1, 1, 1]
> Dim(dtp);
48

Example: Tensor - VIII

$>$ dtp:Maximal;
Highest weight decomposition of representation of: A2: Simply connected root datum of dimension 2 of ty Weights: [
$\left(\begin{array}{ll}3 & 1\end{array}\right)$,
$\left(\begin{array}{ll}0 & 1\end{array}\right)$,
(2 0),
$\left(\begin{array}{ll}1 & 2\end{array}\right)$
]
Multiplicities: [1, 1, 1, 1]
> Dim(dtp);
48
> [Dim(LieRepresentationDecomposition(A2, w)) :

$$
\mathrm{w} \text { in }[[3,1],[0,1],[2,0],[1,2]]] ;
$$

$[24,3,6,15]$

LiE-I

- van Leeuwen, Cohen, Lisser, 1992
- Advantages:
- Specifically for Lie group computations,
- \Rightarrow Extremely fast.
- Disadvantages:
- Specifically for Lie group computations,
- More or less unchanged since 2000,
- Not very customizable.

LiE - II
I. Lie groups
2. Root systems
3. The Weyl group
4. Operations related to the Symmetric group
5. Representations

TU/e

4. Operations related to the Symmetric group

5. Representations

- Tensor
- Adams operator
- Alternating Weyl sum
- Symmetric / Alternating Tensor
- Branch / Collect
- ...

TU/e

Embedding LiE in Magma - I

- No black-box approach,

Embedding LiE in Magma - I

- No black-box approach,
- Connected reductive complex Lie groups \Rightarrow Root data,
- Existing functionality by Murray, Taylor, de Graaf, Haller,
- Focus on representations,
- First a package (intrinsics),
- Port critical parts to C.

Embedding LiE in Magma - II: Timings

Tensoring two (non-irreducible) representations:

Group	$\#$	Dims	LiE	Magma (package)	Magma (C)
A3	IO	360,444	0.006		
A3	IO	IOO,40	0.007		
D5	IO	I75,664	0.005		
E8	3	60760,11625	0.020		
E8	I	8I92000,34537472000	0.100		

Embedding LiE in Magma - II: Timings

Tensoring two (non-irreducible) representations:

Group	$\#$	Dims	LiE	Magma (package)	Magma (C)
A3	IO	360,444	0.006	0.302	
A3	IO	IOO,40	0.007	0.612	
D5	IO	I75,664	0.005	0.299	
E8	3	60760,11625	0.020	6.823	
E8	I	8I92000,34537472000	0.100	n/a	

Embedding LiE in Magma - II: Timings

Tensoring two (non-irreducible) representations:

Group	$\#$	Dims	LiE	Magma (package)	Magma (C)
A3 2	IO	360,444	0.006	0.302	0.095
A3	IO	100,40	0.007	0.612	0.055
D5	IO	175,664	0.005	0.299	0.104
E8	3	60760,11625	0.020	6.823	0.370
E8	I	8192000,34537472000	0.100	n/a	4.660

Conclusion \& Todo

Done:

- All functionality of LiE in a Magma package,
- Created Magma type for decomposition polynomials,
- Ported some speed-critical functions in C.

Conclusion \& Todo

Done:

- All functionality of LiE in a Magma package,
- Created Magma type for decomposition polynomials,
- Ported some speed-critical functions in C.

Todo:

- Port a few more speed-critical functions to C,
- Speed up existing DominantCharacter functionality,
- Write documentation,
- Work on maximal subgroups of algebraic groups...

TU/e

Questions?

