

Dan Roozemond 27 July 2006

/ department of mathematics and computer science

Contents

• Embedding LiE in Magma

Contents

- Lie Groups
- Representations
- Example: Tensor
- LiE
- Embedding LiE in Magma

Contents

- Lie Groups
- Representations
- Example: Tensor
- LiE
- Embedding LiE in Magma
- Conclusion & Todo

Lie Groups: Introduction - I

A Lie group is a group that also has the structure of a differentiable manifold, such that the maps of multiplication and inversion are differentiable maps.

Lie Groups: Introduction - II

Restrict to connected reductive complex Lie groups:

- Nice Classification Theory
- Nice Representation Theory

Lie Groups: Classification Theory - I

Bourbaki, 1975: if g is a connected reductive complex Lie group:

 $g' = \bigotimes \begin{cases} \text{simply connected semisimple complex grp} \\ \text{complex torus} \end{cases}$

and

 $g = \xi(g'), \xi$ a homomorphism with finite kernel.

Lie Groups: Classification Theory - I

Bourbaki, 1975: if g is a connected reductive complex Lie group:

 $g' = \bigotimes \begin{cases} \text{ simply connected semisimple complex grp } \bigotimes \begin{cases} \text{ s.c. simple grp} \\ \vdots \\ \text{ s.c. simple grp} \end{cases}$

and

 $g=\xi(g'),\xi$ a homomorphism with finite kernel.

Lie Groups: Classification Theory - II

Simply connected simple Lie groups:

- Classical types: A_n , B_n , C_n , D_n ,
- Exceptional types: F_4 , G_2 , E_6 , E_7 , E_8 .

Lie Groups: Classification Theory - III

We restrict to

 $g = \bigotimes \begin{cases} \text{ simply connected semisimple complex grp } \bigotimes \begin{cases} \text{ s.c. simple grp } \\ \vdots \\ \text{ s.c. simple grp } \end{cases}$

Then, e.g.

 $g = A_4 C_3 B_1 T_2.$

Fix a maximal torus in g

 $T = S \otimes T'$

Fix a maximal torus in g

$$T = S \otimes T'$$

Lie rank:

 $\operatorname{rank}(g) := \dim(T)$

Fix a maximal torus in g

$$T = S \otimes T'$$

Lie rank:

$$\mathrm{rank}(g):=\dim(T)$$

Weights: elements of $\Lambda(T)$ = algebraic group morphisms $T \to \mathbb{C}^*$. Weights: isomorphism classes of 1-dimensional T-modules.

Fix a maximal torus in g

$$T = S \otimes T'$$

Lie rank:

 $\mathrm{rank}(g):=\dim(T)$

Weights: elements of $\Lambda(T)$ = algebraic group morphisms $T \to \mathbb{C}^*$. Weights: isomorphism classes of 1-dimensional T-modules. Weights: elements of \mathbb{C}^r .

Representations - I

 $\rho:g\to \operatorname{GL}(V),\qquad \rho\text{ a Lie group homomorphism.}$

•

Representations - I

- $\rho:g\to \operatorname{GL}(V),\qquad \rho\text{ a Lie group homomorphism.}$
- Equivalently, we specify a left action of g on V, such that each map

$$v \mapsto x.v, \qquad v \in V, x \in g,$$

is linear and depends on a differentiable way on x. Then V is called a g-module.

• V is called *irreducible* if: $g.V' = V' \Rightarrow V' = 0$ or V' = V.

Representations - I

- $\rho:g\to \operatorname{GL}(V),\qquad \rho \text{ a Lie group homomorphism.}$
- Equivalently, we specify a left action of g on V, such that each map

 $v\mapsto x.v, \qquad v\in V, x\in g, \qquad \qquad v\mapsto
ho(x).v$

is linear and depends on a differentiable way on x. Then V is called a g-module.

• V is called *irreducible* if: $g.V' = V' \Rightarrow V' = 0$ or V' = V.

•

Lie Groups: Weights - II / Representations - II

The torus T is reductive and Abelian, so it is diagonalisable in any g-representation,

SO

If M is a *g*-module, then the restriction of M to T is a direct sum of 1-dimensional T-modules, and therefore described by a set of weights with multiplicities.

Lie Groups: Weights - III / Representations - III

- Adjoint representation of g: its representation on the Lie algebra of g,
- *Root system* Φ : Non-zero weights occurring in the adjoint representation,
- Fundamental roots: $\{\alpha_1, \ldots, \alpha_s\} \subset \Phi$.

Lie Groups: Weights - III / Representations - III

- Adjoint representation of g: its representation on the Lie algebra of g,
- *Root system* Φ : Non-zero weights occurring in the adjoint representation,
- Fundamental roots: $\{\alpha_1, \ldots, \alpha_s\} \subset \Phi$.

Partial ordering of weights:

$$v \prec v' \Leftrightarrow v - v' = \sum_{i=1}^{s} \kappa_i \alpha_i, \qquad \kappa_i \in \mathbb{N}_0.$$

Representations - III

Two facts:

- Every *g*-module decomposes as a direct sum of irreducible modules,
- Irreducible representations $\Leftrightarrow \Lambda^+(T)$: *dominant weights*:

Assign to each irreducible module its highest weight.

Representations - III

Two facts:

- Every *g*-module decomposes as a direct sum of irreducible modules,
- Irreducible representations $\Leftrightarrow \Lambda^+(T)$: *dominant weights*:

Assign to each irreducible module its highest weight.

• Representations \Leftrightarrow *Decomposition Polynomials*.

Representations - IV: Summary

Irreducible Modules $\Lambda(T)$: Weights and Multiplicities $\Lambda^+(T)$: **Dominant Weights** and Multiplicities Unique **Highest Weight**

Representations - IV: Summary

Representations - IV: Summary

Example: Tensor - I

- > A2 := RootDatum("A2" : Isogeny := "SC"); > L := LieAlgebra(A2, Rationals()); > _,_,T := StandardBasis(L); > rbo := AdjointBopregentation(L);
- > rho := AdjointRepresentation(L);
- > V := VectorSpace(Rationals(), 8);
- /* Now V is an L-module by v --> x.v = rho(x).v */

Example: Tensor - II

> rho := AdjointRepresentation(L); > V := VectorSpace(Rationals(), 8); /* Now V is an L-module by v --> x.v = rho(x).v */ > MT := [Transpose(Matrix(rho(t))) : t in T]; MT;

Example: Tensor - III

> rho := AdjointRepresentation(L); > V := VectorSpace(Rationals(), 8); /* Now V is an L-module by v --> x.v = rho(x).v */ > MT := [Transpose(Matrix(rho(t))) : t in T]; MT;

 \Rightarrow Weights are:

$$(-1, -1), (1, -2), (-2, 1), (0, 0), (0, 0), (2, -1), (-1, 2), (1, 1)$$

/ department of mathematics and computer science

28/44

Example: Tensor - IV

 \Rightarrow Weights are:

(-1,-1), (1,-2), (-2,1), (0,0), (0,0), (2,-1), (-1,2), (1,1)

 \Rightarrow Dominant weights are:

(0,0) (twice) , (1,1).

Example: Tensor - V

Lie group $g = A_2$:

- ρ_1 : Adjoint representation of g, dimension 8,
- ρ_2 : Irreducible Representation with highest weight (2, 0), dimension 6.

Tensoring these representations will give a representation of dimension 48.

Example: Tensor - VI

Tensoring these representations will give a representation of dimension 48. > rhol := HighestWeightRepresentation(L, [1,1]); > rho2 := HighestWeightRepresentation(L, [2,0]); > MT := [Transpose(TensorProduct(Matrix(rho1(t)), Matrix(rho2(t))) : t in T]; Weights: > { * Vector([(B[i]*m)[i] : m in MT]):i in [1..#B] *}; { * $(0 - 1)^{2},$ $(-2 \quad 0)^{-3}$, ···· (0 -2)^^3, (4 2)* }

technische universiteit eindhoven TU/

Example: Tensor - VII

```
> drho1 := LieRepresentationDecomposition(A2, [1,1]);
> drho2 := LieRepresentationDecomposition(A2, [2,0]);
```

- > dtp := Tensor(drho1, drho2);
- > dtp:Maximal;
- Highest weight decomposition of representation of:
 - A2: Simply connected root datum of dimension 2 of ty Weights:

```
(3 1),
                 (0 \ 1),
                 (2 \ 0),
                 (1 2)
     Multiplicities: [ 1, 1, 1, 1 ]
> Dim(dtp);
48
```

Example: Tensor - VIII

```
> dtp:Maximal;
Highest weight decomposition of representation of:
     A2: Simply connected root datum of dimension 2 of ty
     Weights:
                (3 1),
                (0 \ 1),
                (2 \ 0),
                (1 2)
     Multiplicities: [ 1, 1, 1, 1 ]
> Dim(dtp);
48
  [ Dim(LieRepresentationDecomposition(A2, w)) :
>
                   w in [[3,1],[0,1],[2,0],[1,2]] ];
[ 24, 3, 6, 15 ]
```


LiE - I

- van Leeuwen, Cohen, Lisser, 1992
- Advantages:
 - Specifically for Lie group computations,
 - \Rightarrow Extremely fast.
- Disadvantages:
 - Specifically for Lie group computations,
 - More or less unchanged since 2000,
 - Not very customizable.

- 1. Lie groups
- 2. Root systems
- 3. The Weyl group
- 4. Operations related to the Symmetric group
- 5. Representations

- 1. Lie groups
- 2. Root systems
- 3. The Weyl group
- 4. Operations related to the Symmetric group

5. Representations

- Tensor
- Adams operator
- Alternating Weyl sum
- Symmetric / Alternating Tensor
- Branch / Collect

• ...

Embedding LiE in Magma - I

• No black-box approach,

Embedding LiE in Magma - I

- No black-box approach,
- Connected reductive complex Lie groups \Rightarrow Root data,
- Existing functionality by Murray, Taylor, de Graaf, Haller,
- Focus on representations,
- First a package (intrinsics),
- Port critical parts to C.

Embedding LiE in Magma - II: Timings

Tensoring two (non-irreducible) representations:

Group	#	Dims	LiE	Magma (package)	Magma (C)
A3	10	360, 444	0.006		0.005
A3	10	100, 40	0.007		0.035
D5	10	175, 664	0.005		0.004
E8	3	60760, 11625	0.020		0.370
E8	Ι	8192000, 34537472000	0.100		

Embedding LiE in Magma - II: Timings

Tensoring two (non-irreducible) representations:

Group	#	Dims	LiE	Magma (package)	Magma (C)
A3	IO	360, 444	0.006	0.302	0.005
A3	IO	100, 40	0.007	0.612	0.035
D5	10	175, 664	0.005	0.299	0.104
E8	3	60760, 11625	0.020	6.823	0.370
E8	Ι	8192000, 34537472000	0.100	n/a	

Embedding LiE in Magma - II: Timings

Tensoring two (non-irreducible) representations:

Group	#	Dims	LiE	Magma (package)	Magma (C)
A3	IO	360, 444	0.006	0.302	0.095
A3	10	100, 40	0.007	0.612	0.055
D5	10	175, 664	0.005	0.299	0.104
E8	3	60760, 11625	0.020	6.823	0.370
E8	Ι	8192000, 34537472000	0.100	n/a	4.660

Conclusion & Todo

Done:

- All functionality of LiE in a Magma package,
- Created Magma type for decomposition polynomials,
- Ported some speed-critical functions in C.

Conclusion & Todo

Done:

- All functionality of LiE in a Magma package,
- Created Magma type for decomposition polynomials,
- Ported some speed-critical functions in C.

Todo:

- Port a few more speed-critical functions to C,
- Speed up existing DominantCharacter functionality,
- Write documentation,
- Work on maximal subgroups of algebraic groups...

Questions?

/ department of mathematics and computer science

