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What is the successor of the series

1, 3, 8, 28, . . .
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1, 3, 8, 28, 537
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What is the successor of the series

0, 3, 8, 28, . . .
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0, 3, 8, 28, 248



12

/ department of mathematics and computer scienceJJ J N I II 6/52JJ J N I II 6/52

Contents

• Motivation

• Introduction to Lie Algebras

• Extremal Elements + Examples:

→ One generator case

→ Two generator case

• Some existing results

• Semi-simplicity theorem

→ Five generator case

• Examples

• Three theorems and three conjectures

• Conclusion



12

/ department of mathematics and computer scienceJJ J N I II 7/52JJ J N I II 7/52

Motivation: Derivations

• D is a derivation: D(fg) = fD(g) + D(f )g
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Motivation: Derivations

• D is a derivation: D(fg) = fD(g) + D(f )g

• Suppose both D and E are derivations
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Motivation: Derivations

• D is a derivation: D(fg) = fD(g) + D(f )g

• Suppose both D and E are derivations

• DE is no derivation
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Motivation: Derivations

• D is a derivation: D(fg) = fD(g) + D(f )g

• Suppose both D and E are derivations

• DE is no derivation

• But DE − ED is. Write [D, E] = DE − ED
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Motivation: Derivations

• D is a derivation: D(fg) = fD(g) + D(f )g

• Suppose both D and E are derivations

• DE is no derivation

• But DE − ED is. Write [D, E] = DE − ED

• Notice [D, D] = 0
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Motivation: Derivations

• D is a derivation: D(fg) = fD(g) + D(f )g

• Suppose both D and E are derivations

• DE is no derivation

• But DE − ED is. Write [D, E] = DE − ED

• Notice [D, D] = 0

• Calculations show [D, [E, F ]] + [E, [F, D]] + [F, [D, E]] = 0
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Motivation: Derivations

• D is a derivation: D(fg) = fD(g) + D(f )g

• Suppose both D and E are derivations

• DE is no derivation

• But DE − ED is. Write [D, E] = DE − ED

• Notice [D, D] = 0

• Calculations show [D, [E, F ]] + [E, [F, D]] + [F, [D, E]] = 0

• Forget about derivations and define ‘Lie Algebra’
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Lie Algebras - 1

A Lie algebra L is a vector space with a map [·, ·] : V × V → V such that

1. [·, ·] is bilinear,
2. [·, ·] is skew-symmetric:

[x, x] = 0 for all x ∈ L, and

3. [·, ·] satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

Note that in characteristic not 2, property 2. is equivalent to [x, y] = −[y, x].
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Lie Algebras - 2: An example

An example: gl(V ).

Let V be a vector space, and L the ring of linear transformations V → V .
Define [x, y] = xy − yx for x, y ∈ L.
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Lie Algebras - 3: Another example

The Lie algebra A1 consists of three elements, such that:
• [x, y] = z,

• [x, z] = [x, [x, y]] = −2x, and

• [y, z] = [y, [x, y]] = 2y.
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Lie Algebras - 3: Another example

The Lie algebra A1 consists of three elements, such that:

• [x, y] = z,

• [x, z] = [x, [x, y]] = −2x, and

• [y, z] = [y, [x, y]] = 2y.

x y z
x 0 z −2x
y −z 0 2y
z 2x −2y 0
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Lie Algebras - 3: Another example

The Lie algebra A1 consists of three elements, such that:

• [x, y] = z,

• [x, z] = [x, [x, y]] = −2x, and

• [y, z] = [y, [x, y]] = 2y.

x y z
x 0 z −2x
y −z 0 2y
z 2x −2y 0

Representation: Let x =

(
0 1
0 0

)
and y =

(
0 0
1 0

)
and [x, y] = xy − yx.

Then z = [x, y] =

(
1 0
0 −1

)
.
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Lie Algebras - 4: Ideals

• Ideal: A subspace I is an ideal of L if

x ∈ L, y ∈ I ⇒ [x, y] ∈ I.

• Simplicity: L is called simple if it has no ideals except {0} and L.

• Semi-simplicity
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Lie Algebras - 5: Ideals

• Solvability: I is solvable if the sequence

I, [I, I ], [[I, I ], [I, I ]], [[[I, I ], [I, I ]], [[I, I ], [I, I ]]], . . .

‘goes to zero’.

• Radical: Rad(L) is the largest solvable ideal.

• Theorem: L/Rad(L) is semi-simple.
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Lie Algebras - 6: Simple Lie algebras

The classical Lie algebras:

• An (n ≥ 1): sln+1, of dimension (n + 1)2 − 1,

• Bn (n ≥ 2): o2n+1, of dimension n(2n + 1),

• Cn (n ≥ 3): sp2n, of dimension n(2n + 1),

• Dn (n ≥ 4): o2n, of dimension n(2n− 1).

The exceptional Lie algebras: G2, F4, E6, E7, E8.



12

/ department of mathematics and computer scienceJJ J N I II 22/52JJ J N I II 22/52

Extremal Elements: Definition

x ∈ L is called extremal if for all y ∈ L, we have

[x, [x, y]] = αx for some α ∈ F.
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Lie Algebras Generated by One Extremal Element

• Lie algebra L over the field F generated by extremal element x,

• [x, x] = 0, so L = Fx,

• dim(L) = 1,

• L is solvable.
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Lie Algebras Generated by Two Extremal Elements

• L, generated by extremal elements x and y,

• [x, [x, y]] = αx and [y, [y, x]] = βy.
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Lie Algebras Generated by Two Extremal Elements

• L, generated by extremal elements x and y,

• [x, [x, y]] = αx and [y, [y, x]] = βy.

x y z
x 0 z αx
y −z 0 −αy
z −αx αy 0
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Lie Algebras Generated by Two Extremal Elements

• L, generated by extremal elements x and y,

• [x, [x, y]] = αx and [y, [y, x]] = βy.

x y z
x 0 z αx
y −z 0 −αy
z −αx αy 0

• If [x, y] = 0: dim(L) = 2 and L is solvable,

• If [x, y] 6= 0 and α = 0: dim(L) = 3 and L is solvable (‘Heisenberg’),

• If [x, y] 6= 0 and α 6= 0: L ∼= A1!
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Some results of CSUW01 - 1

Cohen, Steinbach, Ushirobira, Wales, 2001. Suppose L is generated by
finitely many extremal elements. Then:

• L is finite dimensional, and

• L is spanned by extremal elements.

(Using [ZK90])
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Some results of CSUW01 - 2
# Extr Elts Dimension General Lie algebra

1 1 n/a (0 dimensional)
2 3 A1 (3 dimensional)
3 8 A2 (8 dimensional)
4 28 ?
5 537 ?
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1, 3, 8, 28, 537
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Some results of CSUW01 - 3

Simple Lie algebra # Extr Elts Condition
An n + 1 n ≥ 1
Bn n + 1 n ≥ 3
Cn 2n n ≥ 2
Dn n n ≥ 4
G2 4

E6, E7, E8, F4 5
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Verification using GAP

# Extr Elts Dimension General Lie algebra
1 1 n/a (0 dimensional)
2 3 A1 (3 dimensional)
3 8 A2 (8 dimensional)
4 28 D4 (28 dimensional)
5 537 ?
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Semi-Simplicity Theorem - 1

If

• L1 is a semi-simple Lie algebra generated by n extremal elements and
no fewer, and

• L2 is a semi-simple Lie algebra generated by m extremal elements and
no fewer,

then

• L1 + L2 is generated by n + m extremal elements,

• and no fewer.
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Semi-Simplicity Theorem - 2: Examples

• The simple Lie algebra A1 requires 2 extremal elements,

• the simple Lie algebra A2 requires 3 extremal elements,

• the simple Lie algebra G2 requires 4 extremal elements, and

so

• the semi-simple Lie algebra A1 + A1 requires 4 extremal elements, and

• the semi-simple Lie algebra A2 + G2 requires 7 extremal elements.
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Five Generators - 1

What if the 537-dimensional Lie algebra generated by five extremal elements
were semi-simple?

Simple Lie algebra Dimension # Extr Elts Condition
An (n + 1)2 − 1 n + 1 n ≥ 1
Bn n(2n + 1) n + 1 n ≥ 3
Cn n(2n + 1) 2n n ≥ 2
Dn n(2n− 1) n n ≥ 4
G2 14 4
E6 78 5
E7 133 5
E8 248 5
F4 52 5
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Five Generators - 2

What if the 537-dimensional Lie algebra generated by five extremal elements
were semi-simple?

Lie Algebra Dim # Extr Elts
A1 = B1 = C1 3 2
A2 8 3
B2 = C2 10 4
G2 14 4
A3 15 4
B3 21 4
A4 24 5

Lie Algebra Dim # Extr Elts
D4 28 4
B4 36 5
D5 45 5
F4 52 5
E6 78 5
E7 133 5
E8 248 5
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Five Generators - 3

The biggest semi-simple Lie algebra generated by five extremal elements is
E8, of dimension 248!

# Extr Elts Dimension General Lie algebra
1 1 n/a (0 dimensional)
2 3 A1 (3 dimensional)
3 8 A2 (8 dimensional)
4 28 D4 (28 dimensional)
5 537 E8 (248 dimensional)
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0, 3, 8, 28, 248



12

/ department of mathematics and computer scienceJJ J N I II 38/52JJ J N I II 38/52

Examples - Introduction

Consider 4 and 5 generator cases in more detail:

�u
�x �y

�
z

• 4 extremal elements generating L,

• [x, y] = [x, z] = [y, z] = 0,

• [x, u], [y, u], [z, u] 6= 0.
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Examples - Introduction

Consider 4 and 5 generator cases in more detail:

�u
�x �y

�
z

• 4 extremal elements generating L,

• [x, y] = [x, z] = [y, z] = 0,

• [x, u], [y, u], [z, u] 6= 0.

• dim(L) = 12 and dim(Rad(L)) = 9.
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Examples - Introduction

Consider 4 and 5 generator cases in more detail:

�u
�x �y

�
z

• 4 extremal elements generating L,

• [x, y] = [x, z] = [y, z] = 0,

• [x, u], [y, u], [z, u] 6= 0.

• dim(L) = 12 and dim(Rad(L)) = 9,

• dim(L/Rad(L)) = 12− 9 = 3,

• so L/Rad(L) ∼= A1.
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Examples - Four generators

� � � �

�

�

�

�

�

�

�

�

10 15 28
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Examples - Four generators

� � � �

�

�

�

�

�

�

�

�

10 15 28
C2 A3 D4
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Examples - Five generators

� �

��

�

�

�
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� �

��

�

36 24 249
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Examples - Five generators

� �

��

�

�

�
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� �

��

�

36 24 249
B4 A4 E8 ?
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Three Isomorphisms

� �

� �

�
� �

��

�

�

��

�

3 8 15 24
A1 A2 A3 A4
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Three Isomorphisms
1

2n

1 2 2n-1 2n

1

2n

n-1 n
1

2

3

1

2

3
n

n-1

n-2

1

2

3
n

n-1

n-2

isomorphic to An−1.
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Three Isomorphisms
1

2n

1 2 2n-1 2n

1

2n

n-1 n
1

2

3

1

2

3
n

n-1

n-2

1

2

3
n

n-1

n-2

isomorphic to An−1.

1

2n

1 2 2n-1 2n isomorphic to Cn.
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Three Isomorphisms
1

2n

1 2 2n-1 2n

1

2n

n-1 n
1

2

3

1

2

3
n

n-1

n-2

1

2

3
n

n-1

n-2

isomorphic to An−1.

1

2n

1 2 2n-1 2n isomorphic to Cn.

1

2n

1 2 2n-1 2n

1

2n

n-1 n
1

2

3

1

2

3
n

n-1

n-2

1

2

3
n

n-1

n-2

almost isomorphic to An−1.
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Three Conjectures

1

2n

1 2 2n-1 2n

1

2n

n-1 n
1

2

3

1

2

3
n

n-1

n-2

1

2

3
n

n-1

n-2

really isomorphic to An−1.

1

2n

1 2 2n-1 2n

1

2n

n-1 n
1

2

3

1

2

3
n

n-1

n-2

1

2

3
n

n-1

n-2

isomorphic to Bn−1.

1

2n

1 2 2n-1 2n

1

2n

n-1 n
1

2

3

1

2

3
n

n-1

n-2

1

2

3
n

n-1

n-2
isomorphic to Dn.



12

/ department of mathematics and computer scienceJJ J N I II 50/52JJ J N I II 50/52

Conclusion

• Considered four and five generator case

• Proved semi-simplicity theorem

• Proved three isomorphisms

• Found three conjectures
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Future research

• How can we use extremal elements?

• Prove three conjectures

• 1, 3, 8, 28, 537, . . .
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Questions?
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