

Lie Algebras generated by Extremal Elements

Dan Roozemond 17 August 2005

What is the successor of the series

 $1, 3, 8, 28, \ldots$

1, 3, 8, 28, 537

What is the successor of the series $0, 3, 8, 28, \ldots$

0, 3, 8, 28, 248

Contents

- Motivation
- Introduction to Lie Algebras
- Extremal Elements + Examples:
 - \rightarrow One generator case
 - \rightarrow Two generator case
- Some existing results
- Semi-simplicity theorem
 - \rightarrow Five generator case
- Examples
- Three theorems and three conjectures
- Conclusion

• D is a derivation: D(fg)=fD(g)+D(f)g

- D is a derivation: D(fg)=fD(g)+D(f)g
- $\bullet\,$ Suppose both D and E are derivations

- D is a derivation: D(fg)=fD(g)+D(f)g
- $\bullet\,$ Suppose both D and E are derivations
- DE is no derivation

- D is a derivation: D(fg)=fD(g)+D(f)g
- $\bullet\,$ Suppose both D and E are derivations
- DE is no derivation
- But DE ED is. Write [D, E] = DE ED

- D is a derivation: D(fg)=fD(g)+D(f)g
- $\bullet\,$ Suppose both D and E are derivations
- DE is no derivation
- But DE ED is. Write [D, E] = DE ED
- Notice [D, D] = 0

- D is a derivation: D(fg)=fD(g)+D(f)g
- $\bullet\,$ Suppose both D and E are derivations
- DE is no derivation
- But DE ED is. Write [D, E] = DE ED
- Notice [D, D] = 0
- Calculations show [D, [E, F]] + [E, [F, D]] + [F, [D, E]] = 0

- D is a derivation: D(fg) = fD(g) + D(f)g
- Suppose both D and E are derivations
- DE is no derivation
- But DE ED is. Write [D, E] = DE ED
- Notice [D, D] = 0
- Calculations show [D, [E, F]] + [E, [F, D]] + [F, [D, E]] = 0
- Forget about derivations and define 'Lie Algebra'

Lie Algebras - 1

A Lie algebra *L* is a vector space with a map [·, ·] : V × V → V such that
I. [·, ·] is bilinear,
2. [·, ·] is skew-symmetric:

$$[x, x] = 0$$
 for all $x \in L$, and

3. $[\cdot,\cdot]$ satisfies the Jacobi identity:

 $[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 \text{ for all } x,y,z \in L.$

Note that in characteristic not 2, property 2. is equivalent to [x, y] = -[y, x].

Lie Algebras - 2: An example

An example: $\mathfrak{gl}(V).$

Let V be a vector space, and L the ring of linear transformations $V \to V$. Define [x, y] = xy - yx for $x, y \in L$.

Lie Algebras - 3: Another example

The Lie algebra A_1 consists of three elements, such that: $\bullet [x,y] = z$,

- [x,z]=[x,[x,y]]=-2x , and
- [y, z] = [y, [x, y]] = 2y.

Lie Algebras - 3: Another example

The Lie algebra A_1 consists of three elements,

- [x, y] = z,
- [x, z] = [x, [x, y]] = -2x, and
- [y, z] = [y, [x, y]] = 2y.

	x	У	\mathbf{Z}
\mathbf{x}	0	z	-2x
y	-z	0	2y
\mathbf{Z}	2x	-2y	0

such

that:

Lie Algebras - 3: Another example

The Lie algebra A_1 consists of three elements, such that:

•
$$[x, y] = z$$
,
• $[x, z] = [x, [x, y]] = -2x$, and
• $[y, z] = [y, [x, y]] = 2y$.

 \mathbf{X}

 \mathbf{V}

 \mathbf{Z}

Representation: Let $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and [x, y] = xy - yx. Then $z = [x, y] = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Lie Algebras - 4: Ideals

• Ideal: A subspace I is an ideal of L if

$$x \in L, y \in I \Rightarrow [x, y] \in I.$$

- Simplicity: L is called simple if it has no ideals except $\{0\}$ and L.
- Semi-simplicity

Lie Algebras - 5: Ideals

• Solvability: *I* is solvable if the sequence

 $I, [I, I], [[I, I], [I, I]], [[[I, I], [I, I]], [[I, I], [I, I]]], \dots$

'goes to zero'.

- Radical: $\operatorname{Rad}(L)$ is the largest solvable ideal.
- Theorem: $L/\operatorname{Rad}(L)$ is semi-simple.

Lie Algebras - 6: Simple Lie algebras

The classical Lie algebras:

- A_n ($n \ge 1$): \mathfrak{sl}_{n+1} , of dimension $(n+1)^2 1$,
- B_n ($n \ge 2$): \mathfrak{o}_{2n+1} , of dimension n(2n+1),
- C_n ($n \ge 3$): \mathfrak{sp}_{2n} , of dimension n(2n+1),
- D_n ($n \ge 4$): \mathfrak{o}_{2n} , of dimension n(2n-1).

The exceptional Lie algebras: G_2, F_4, E_6, E_7, E_8 .

Extremal Elements: Definition

 $x \in L$ is called *extremal* if for all $y \in L$, we have

 $[x,[x,y]] = \alpha x \text{ for some } \alpha \in \mathbb{F}.$

Lie Algebras Generated by One Extremal Element

- Lie algebra L over the field $\mathbb F$ generated by extremal element x,
- [x, x] = 0, so $L = \mathbb{F}x$,
- $\dim(L) = 1$,
- *L* is solvable.

Lie Algebras Generated by Two Extremal Elements

- L, generated by extremal elements x and y,
- $[x, [x, y]] = \alpha x$ and $[y, [y, x]] = \beta y$.

Lie Algebras Generated by Two Extremal Elements

- L, generated by extremal elements x and y,
- $\bullet \ [x,[x,y]] = \alpha x \text{ and } [y,[y,x]] = \beta y.$

	X	У	\mathbf{Z}
\mathbf{X}	0	z	αx
У	-z	0	$-\alpha y$
\mathbf{Z}	$-\alpha x$	αy	0

Lie Algebras Generated by Two Extremal Elements

- L, generated by extremal elements x and y,
- $[x, [x, y]] = \alpha x$ and $[y, [y, x]] = \beta y$.

	X	У	\mathbf{Z}
\mathbf{X}	0	z	αx
\mathbf{y}	-z	0	$-\alpha y$
\mathbf{Z}	$-\alpha x$	αy	0

- If [x, y] = 0: dim(L) = 2 and L is solvable,
- If $[x, y] \neq 0$ and $\alpha = 0$: dim(L) = 3 and L is solvable ('Heisenberg'),
- If $[x, y] \neq 0$ and $\alpha \neq 0$: $L \cong A_1!$

Some results of CSUW01 - 1

Cohen, Steinbach, Ushirobira, Wales, 2001. Suppose L is generated by finitely many extremal elements. Then:

- $\bullet~L$ is finite dimensional, and
- L is spanned by extremal elements.

(Using [ZK90])

Some results of CSUW01 - 2

# Extr Elts	Dimension	General Lie algebra
I	1	n/a (0 dimensional)
2	3	A_1 (3 dimensional)
3	8	A_2 (8 dimensional)
4	28	?
5	537	?

1, 3, 8, 28, 537

Some results of CSUW01 - 3

Simple Lie algebra	# Extr Elts	Condition
A_n	n+1	$n \ge 1$
B_n	n+1	$n \ge 3$
C_n	2n	$n \ge 2$
D_n	n	$n \ge 4$
G_2	4	
E_6, E_7, E_8, F_4	5	

Verification using GAP

# Extr Elts	Dimension	General Lie algebra
I	1	n/a (0 dimensional)
2	3	A_1 (3 dimensional)
3	8	A_2 (8 dimensional)
4	28	D_4 (28 dimensional)
5	537	?

Semi-Simplicity Theorem - 1

If

- L_1 is a semi-simple Lie algebra generated by n extremal elements and no fewer, and
- $L_{\rm 2}$ is a semi-simple Lie algebra generated by m extremal elements and no fewer,

then

- $L_1 + L_2$ is generated by n + m extremal elements,
- and no fewer.

Semi-Simplicity Theorem - 2: Examples

- The simple Lie algebra A_1 requires 2 extremal elements,
- the simple Lie algebra A_2 requires 3 extremal elements,
- the simple Lie algebra G_2 requires 4 extremal elements, and

SO

- the semi-simple Lie algebra $A_1 + A_1$ requires 4 extremal elements, and
- the semi-simple Lie algebra $A_2 + G_2$ requires 7 extremal elements.

Five Generators - 1

What if the $537\mathchar`-dimensional Lie algebra generated by five extremal elements were semi-simple?$

Simple Lie algebra	Dimension	# Extr Elts	Condition
A_n	$(n+1)^2 - 1$	n+1	$n \ge 1$
B_n	n(2n+1)	n+1	$n \ge 3$
C_n	n(2n+1)	2n	$n \ge 2$
D_n	n(2n-1)	n	$n \ge 4$
G_2	14	4	
E_6	78	5	
E_7	133	5	
E_8	248	5	
F_4	52	5	

Five Generators - 2

What if the $537\mathchar`-dimensional Lie algebra generated by five extremal elements were semi-simple?$

Lie Algebra	Dim	# Extr Elts	Lie Algebra	Dim	# Extr Elts
$A_1 = B_1 = C_1$	3	2	D_4	28	4
A_2	8	3	B_4	36	5
$B_2 = C_2$	10	4	D_5	45	5
G_2	14	4	F_4	52	5
A_3	15	4	E_6	78	5
B_3	21	4	E_7	133	5
A_4	24	5	E_8	248	5

Five Generators - 3

The biggest semi-simple Lie algebra generated by five extremal elements is E_8 , of dimension 248!

# Extr Elts	Dimension	General Lie algebra
I	1	n/a (0 dimensional)
2	3	A_1 (3 dimensional)
3	8	A_2 (8 dimensional)
4	28	D_4 (28 dimensional)
5	537	E_8 (248 dimensional)

0, 3, 8, 28, 248

Examples - Introduction

Consider $4 \mbox{ and } 5 \mbox{ generator cases in more detail:}$

• 4 extremal elements generating L,

•
$$[x, y] = [x, z] = [y, z] = 0$$
,

• $[x, u], [y, u], [z, u] \neq 0.$

Examples - Introduction

Consider $4 \mbox{ and } 5 \mbox{ generator cases in more detail:}$

• 4 extremal elements generating L,

•
$$[x, y] = [x, z] = [y, z] = 0$$
,

- $[x, u], [y, u], [z, u] \neq 0.$
- $\dim(L) = 12$ and $\dim(\operatorname{Rad}(L)) = 9$.

Examples - Introduction

Consider $4 \mbox{ and } 5 \mbox{ generator cases in more detail:}$

•
$$[x, y] = [x, z] = [y, z] = 0$$
,

- $[x, u], [y, u], [z, u] \neq 0.$
- $\dim(L) = 12$ and $\dim(\operatorname{Rad}(L)) = 9$,
- $\dim(L/\text{Rad}(L)) = 12 9 = 3$,
- so $L/\operatorname{Rad}(L) \cong A_1$.

Examples - Four generators

Examples - Four generators

Examples - Five generators

Examples - Five generators

isomorphic to A_{n-1} .

isomorphic to A_{n-1} .

isomorphic to C_n .

isomorphic to A_{n-1} .

isomorphic to C_n .

2n

Three Conjectures

Conclusion

- Considered four and five generator case
- Proved semi-simplicity theorem
- Proved three isomorphisms
- Found three conjectures

Future research

- How can we use extremal elements?
- Prove three conjectures
- 1, 3, 8, 28, 537, ...

Questions?

◀ ◀ ▲ ▶ ⋫

References

[ZK90] E. I. Zel'manov and A. I. Kostrikin. A theorem on sandwich algebras. *Trudy Mat. Inst. Steklov.*, 183:106–111, 225, 1990. Translated in Proc. Steklov Inst. Math. 1991, no. 4, 121–126, Galois theory, rings, algebraic groups and their applications (Russian).