Lie Algebras generated by
 Extremal Elements

Dan Roozemond

I7 August 2005

What is the successor of the series

$$
1,3,8,28, \ldots
$$

$$
1,3,8,28,537
$$

What is the successor of the series

$$
0,3,8,28, \ldots
$$

$$
0,3,8,28,248
$$

Contents

- Motivation
- Introduction to Lie Algebras
- Extremal Elements + Examples:
\rightarrow One generator case
\rightarrow Two generator case
- Some existing results
- Semi-simplicity theorem
\rightarrow Five generator case
- Examples
- Three theorems and three conjectures
- Conclusion

TU/e

Motivation: Derivations

- D is a derivation: $D(f g)=f D(g)+D(f) g$

TU/e

Motivation: Derivations

- D is a derivation: $D(f g)=f D(g)+D(f) g$
- Suppose both D and E are derivations

TU/e

Motivation: Derivations

- D is a derivation: $D(f g)=f D(g)+D(f) g$
- Suppose both D and E are derivations
- $D E$ is no derivation

TU/e

Motivation: Derivations

- D is a derivation: $D(f g)=f D(g)+D(f) g$
- Suppose both D and E are derivations
- $D E$ is no derivation
- But $D E-E D$ is. Write $[D, E]=D E-E D$

TU/e

Motivation: Derivations

- D is a derivation: $D(f g)=f D(g)+D(f) g$
- Suppose both D and E are derivations
- $D E$ is no derivation
- But $D E-E D$ is. Write $[D, E]=D E-E D$
- Notice $[D, D]=0$

TU/e

Motivation: Derivations

- D is a derivation: $D(f g)=f D(g)+D(f) g$
- Suppose both D and E are derivations
- $D E$ is no derivation
- But $D E-E D$ is. Write $[D, E]=D E-E D$
- Notice $[D, D]=0$
- Calculations show $[D,[E, F]]+[E,[F, D]]+[F,[D, E]]=0$

Motivation: Derivations

- D is a derivation: $D(f g)=f D(g)+D(f) g$
- Suppose both D and E are derivations
- $D E$ is no derivation
- But $D E-E D$ is. Write $[D, E]=D E-E D$
- Notice $[D, D]=0$
- Calculations show $[D,[E, F]]+[E,[F, D]]+[F,[D, E]]=0$
- Forget about derivations and define 'Lie Algebra’

Lie Algebras - 1

A Lie algebra L is a vector space with a map $[\cdot, \cdot]: V \times V \rightarrow V$ such that
I. $[\cdot, \cdot]$ is bilinear,
2. $[\cdot, \cdot]$ is skew-symmetric:

$$
[x, x]=0 \text { for all } x \in L, \text { and }
$$

3. $[\cdot, \cdot]$ satisfies the Jacobi identity:

$$
[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0 \text { for all } x, y, z \in L
$$

Note that in characteristic not 2, property 2 . is equivalent to $[x, y]=-[y, x]$.

Lie Algebras - 2: An example

An example: $\mathfrak{g l}(V)$.
Let V be a vector space, and L the ring of linear transformations $V \rightarrow V$. Define $[x, y]=x y-y x$ for $x, y \in L$.

Lie Algebras - 3: Another example

The Lie algebra A_{1} consists of three elements, such that:

- $[x, y]=z$,
- $[x, z]=[x,[x, y]]=-2 x$, and
- $[y, z]=[y,[x, y]]=2 y$.

Lie Algebras - 3: Another example

The Lie algebra A_{1} consists of three elements, such that:

- $[x, y]=z$,
- $[x, z]=[x,[x, y]]=-2 x$, and

	\mathbf{x}	\mathbf{y}	\mathbf{z}
\mathbf{x}	0	z	$-2 x$
\mathbf{y}	$-z$	0	$2 y$
\mathbf{z}	$2 x$	$-2 y$	0

Lie Algebras - 3: Another example

The Lie algebra A_{1} consists of three elements, such that:

- $[x, y]=z$,
- $[x, z]=[x,[x, y]]=-2 x$, and
- $[y, z]=[y,[x, y]]=2 y$.

	\mathbf{x}	\mathbf{y}	\mathbf{z}
\mathbf{x}	0	z	$-2 x$
\mathbf{y}	$-z$	0	$2 y$
\mathbf{z}	$2 x$	$-2 y$	0

Representation: Let $x=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $[x, y]=x y-y x$.
Then $z=[x, y]=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

Lie Algebras - 4: Ideals

- Ideal: A subspace I is an ideal of L if

$$
x \in L, y \in I \Rightarrow[x, y] \in I
$$

- Simplicity: L is called simple if it has no ideals except $\{0\}$ and L.
- Semi-simplicity

Lie Algebras - 5: Ideals

- Solvability: I is solvable if the sequence

$$
I,[I, I],[[I, I],[I, I]],[[[I, I],[I, I]],[[I, I],[I, I]]], \ldots
$$

'goes to zero'.

- Radical: $\operatorname{Rad}(L)$ is the largest solvable ideal.
- Theorem: $L / \operatorname{Rad}(L)$ is semi-simple.

Lie Algebras - 6: Simple Lie algebras

The classical Lie algebras:

- $A_{n}(n \geq 1): \mathfrak{s l}_{n+1}$, of dimension $(n+1)^{2}-1$,
- $B_{n}(n \geq 2): \mathfrak{o}_{2 n+1}$, of dimension $n(2 n+1)$,
- $C_{n}(n \geq 3): \mathfrak{s p}_{2 n}$, of dimension $n(2 n+1)$,
- $D_{n}(n \geq 4): \mathfrak{o}_{2 n}$, of dimension $n(2 n-1)$.

The exceptional Lie algebras: $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.

Extremal Elements: Definition

$x \in L$ is called extremal if for all $y \in L$, we have

$$
[x,[x, y]]=\alpha x \text { for some } \alpha \in \mathbb{F}
$$

Lie Algebras Generated by One Extremal Element

- Lie algebra L over the field \mathbb{F} generated by extremal element x,
- $[x, x]=0$, so $L=\mathbb{F} x$,
- $\operatorname{dim}(L)=1$,
- L is solvable.

Lie Algebras Generated by Two Extremal Elements

- L, generated by extremal elements x and y,
- $[x,[x, y]]=\alpha x$ and $[y,[y, x]]=\beta y$.

Lie Algebras Generated by Two Extremal Elements

- L, generated by extremal elements x and y,
- $[x,[x, y]]=\alpha x$ and $[y,[y, x]]=\beta y$.

	\mathbf{x}	\mathbf{y}	\mathbf{z}
\mathbf{x}	0	z	αx
\mathbf{y}	$-z$	0	$-\alpha y$
\mathbf{z}	$-\alpha x$	αy	0

Lie Algebras Generated by Two Extremal Elements

- L, generated by extremal elements x and y,
- $[x,[x, y]]=\alpha x$ and $[y,[y, x]]=\beta y$.

	\mathbf{x}	\mathbf{y}	\mathbf{z}
\mathbf{x}	0	z	αx
\mathbf{y}	$-z$	0	$-\alpha y$
\mathbf{z}	$-\alpha x$	αy	0

- If $[x, y]=0: \operatorname{dim}(L)=2$ and L is solvable,
- If $[x, y] \neq 0$ and $\alpha=0: \operatorname{dim}(L)=3$ and L is solvable ('Heisenberg'),
- If $[x, y] \neq 0$ and $\alpha \neq 0: L \cong A_{1}$!

Some results of CSUW01-1

Cohen, Steinbach, Ushirobira, Wales, 200I. Suppose L is generated by finitely many extremal elements. Then:

- L is finite dimensional, and
- L is spanned by extremal elements.
(Using [ZK90])

Some results of CSUW01-2

\# Extr Elts	Dimension	General Lie algebra
I	1	n/a (0 dimensional)
2	3	A_{1} (3 dimensional)
3	8	A_{2} (8 dimensional)
4	28	$?$
5	537	$?$

$$
1,3,8,28,537
$$

Some results of CSUW01-3

Simple Lie algebra	\# Extr Elts	Condition
A_{n}	$n+1$	$n \geq 1$
B_{n}	$n+1$	$n \geq 3$
C_{n}	$2 n$	$n \geq 2$
D_{n}	n	$n \geq 4$
G_{2}	4	
$E_{6}, E_{7}, E_{8}, F_{4}$	5	

Verification using GAP

\# Extr Elts	Dimension	General Lie algebra
I	1	n/a (0 dimensional)
2	3	A_{1} (3 dimensional)
3	8	A_{2} (8 dimensional)
4	28	D_{4} (28 dimensional)
5	537	$?$

Semi-Simplicity Theorem - 1

If

- L_{1} is a semi-simple Lie algebra generated by n extremal elements and no fewer, and
- L_{2} is a semi-simple Lie algebra generated by m extremal elements and no fewer,
then
- $L_{1}+L_{2}$ is generated by $n+m$ extremal elements,
- and no fewer.

Semi-Simplicity Theorem - 2: Examples

- The simple Lie algebra A_{1} requires 2 extremal elements,
- the simple Lie algebra A_{2} requires 3 extremal elements,
- the simple Lie algebra G_{2} requires 4 extremal elements, and

SO

- the semi-simple Lie algebra $A_{1}+A_{1}$ requires 4 extremal elements, and
- the semi-simple Lie algebra $A_{2}+G_{2}$ requires 7 extremal elements.

Five Generators - 1

What if the 537 -dimensional Lie algebra generated by five extremal elements were semi-simple?

Simple Lie algebra	Dimension	\# Extr Elts	Condition
A_{n}	$(n+1)^{2}-1$	$n+1$	$n \geq 1$
B_{n}	$n(2 n+1)$	$n+1$	$n \geq 3$
C_{n}	$n(2 n+1)$	$2 n$	$n \geq 2$
D_{n}	$n(2 n-1)$	n	$n \geq 4$
G_{2}	14	4	
E_{6}	78	5	
E_{7}	133	5	
E_{8}	248	5	
F_{4}	52	5	

Five Generators - 2

What if the 537 -dimensional Lie algebra generated by five extremal elements were semi-simple?

Lie Algebra	Dim	\# Extr Elts
$A_{1}=B_{1}=C_{1}$	3	2
A_{2}	8	3
$B_{2}=C_{2}$	10	4
G_{2}	14	4
A_{3}	15	4
B_{3}	21	4
A_{4}	24	5

Lie Algebra	Dim	\# Extr Elts
D_{4}	28	4
B_{4}	36	5
D_{5}	45	5
F_{4}	52	5
E_{6}	78	5
E_{7}	133	5
E_{8}	248	5

Five Generators - 3

The biggest semi-simple Lie algebra generated by five extremal elements is E_{8}, of dimension 248 !

\# Extr Elts	Dimension	General Lie algebra
I	1	n/a ($($ dimensional $)$
2	3	$A_{1}(3$ dimensional $)$
3	8	$A_{2}(8$ dimensional $)$
4	28	$D_{4}(28$ dimensional)
5	537	$E_{8}(248$ dimensional $)$

$$
0,3,8,28,248
$$

Examples - Introduction

Consider 4 and 5 generator cases in more detail:

- 4 extremal elements generating L,
- $[x, y]=[x, z]=[y, z]=0$,
- $[x, u],[y, u],[z, u] \neq 0$.

Examples - Introduction

Consider 4 and 5 generator cases in more detail:

- 4 extremal elements generating L,

- $[x, y]=[x, z]=[y, z]=0$,
- $[x, u],[y, u],[z, u] \neq 0$.
- $\operatorname{dim}(L)=12$ and $\operatorname{dim}(\operatorname{Rad}(L))=9$.

Examples - Introduction

Consider 4 and 5 generator cases in more detail:

- 4 extremal elements generating L,
- $[x, y]=[x, z]=[y, z]=0$,
- $[x, u],[y, u],[z, u] \neq 0$.
- $\operatorname{dim}(L)=12$ and $\operatorname{dim}(\operatorname{Rad}(L))=9$,
- $\operatorname{dim}(L / \operatorname{Rad}(L))=12-9=3$,
- $\operatorname{so} L / \operatorname{Rad}(L) \cong A_{1}$.

Examples - Four generators

Examples - Four generators

IO
C_{2}
I5
A_{3}

$$
28
$$

D_{4}

TU/e

Examples - Five generators

36

24

249

TU/e

Examples - Five generators

36
B_{4}

24
A_{4}

249
H_{8} ?

TU/e

Three Isomorphisms

TU/e

Three Isomorphisms

isomorphic to A_{n-1}.

TU/e

Three Isomorphisms

$$
\text { isomorphic to } A_{n-1} \text {. }
$$

TU/e

Three Isomorphisms

isomorphic to A_{n-1}.

isomorphic to C_{n}.

TU/e

Three Conjectures

Conclusion

- Considered four and five generator case
- Proved semi-simplicity theorem
- Proved three isomorphisms
- Found three conjectures

Future research

- How can we use extremal elements?
- Prove three conjectures
- $1,3,8,28,537, \ldots$

TU/e

Questions?

References

[ZK90] E. I. Zel'manov and A. I. Kostrikin. A theorem on sandwich algebras. Trudy Mat. Inst. Steklov., I83:Io6-ini, 225, 1990. Translated in Proc. Steklov Inst. Math. 199I, no. 4, I2I-I26, Galois theory, rings, algebraic groups and their applications (Russian).

