Lie Algebras generated by Extremal Elements

Dan Roozemond
29 June 2005

Contents

- Introduction to Lie Algebras
- Extremal Elements
- Some existing results
- Two algorithms
- A theorem
- Examples
- Two theorems and three propositions
- Conclusion

Lie Algebras - 1

A Lie algebra L is a vector space with a map $[\cdot, \cdot]: V \times V \rightarrow V$ such that
I. $[\cdot, \cdot]$ is bilinear,
2. $[\cdot, \cdot]$ is skew-symmetric:

$$
[x, x]=0 \text { for all } x \in L, \text { and }
$$

3. $[\cdot, \cdot]$ satisfies the Jacobi identity:

$$
[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0 \text { for all } x, y, z \in L
$$

Note that in characteristic not 2, property 2 . is equivalent to $[x, y]=-[y, x]$.

Lie Algebras - 2: An example

An example: $\mathfrak{g l}(V)$.
Let V be a vector space, and L the ring of linear transformations $V \rightarrow V$. Define $[x, y]=x y-y x$ for $x, y \in L$.

TU/e

Lie Algebras - 3: Another example

The special linear Lie algebra $\mathfrak{s l}_{2}$:

$$
\text { Let } x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \text { and } y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

and $[x, y]=x y-y x$. Then

$$
z=[x, y]=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and $[x, z]=-2 x$ and $[y, z]=2 y$.

Lie Algebras - 4: Ideals

- Ideal: I is an ideal of L if

$$
x \in L, y \in I \Rightarrow[x, y] \in I
$$

- Simplicity: L is called simple if it has no ideals except $\{0\}$ and L.
- Semi-simplicity

Lie Algebras - 5: Ideals

- Solvability: I is solvable if the sequence

$$
L,[L, L],[[L, L],[L, L]],[[[L, L],[L, L]],[[L, L],[L, L]]], \ldots
$$

'goes to zero'.

- Radical: $\operatorname{Rad}(L)$ is the largest solvable ideal.
- Theorem: $L / \operatorname{Rad}(L)$ is semi-simple.

Lie Algebras - 6: Simple Lie algebras

The classical Lie algebras:

- $A_{n}(n \geq 1): \mathfrak{s l}_{n+1}$, of dimension $(n+1)^{2}-1$,
- $B_{n}(n \geq 2): \mathfrak{s o}_{2 n+1}$, of dimension $n(2 n+1)$,
- $C_{n}(n \geq 3): \mathfrak{s p}_{2 n}$, of dimension $n(2 n+1)$,
- $D_{n}(n \geq 4): \mathfrak{s o}_{2 n}$, of dimension $n(2 n-1)$.

The special Lie algebras: $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.

Extremal Elements - 1: Definition

- $x \in L$ is called extremal if $[x,[x, L]] \subseteq K x$.
- There exists a linear functional f_{x} such that $[x,[x, y]]=f_{x}(y) x$.

Extremal Elements - 2: Example

The special linear Lie algebra $\mathfrak{s l}_{2}$:

$$
\text { Let } x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \text { and } y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

and $[x, y]=x y-y x$. Then

$$
z=[x, y]=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and $[x,[x, y]]=[x, z]=-2 x$ and $[y,[y, x]]=-[y, z]=-2 y$.
' $\mathfrak{S l}_{2}$ is generated by two extremal elements'

Some results of CSUW01-1

Cohen, Steinbach, Ushirobira, Wales, 200I. Suppose L is generated by finitely many extremal elements. Then:

- L is finite dimensional, and
- L is spanned by extremal elements.
(Using [ZK90])

Some results of CSUW01-2

$\#$	Dimension	General Lie algebra
2	3	A_{1}
3	8	A_{2}
4	28	$?$
5	537	$?$

Some results of CSUW01-3

Simple Lie algebra	Required extremal elements	Condition
A_{n}	$n+1$	$n \geq 1$
B_{n}	$n+1$	$n \geq 3$
C_{n}	$2 n$	$n \geq 2$
D_{n}	n	$n \geq 4$
$E_{6}, E_{7}, E_{8}, F_{4}$	5	
G_{2}	4	

Some results of CSUW01-4

Suppose L is generated by finitely many extremal elements. Then:

- There exists a bilinear functional $f: L \times L \rightarrow K$ with $f(x, y)=f_{x}(y)$.
- f is associative: $f(x,[y, z])=f([x, y], z)$.
- $\operatorname{Rad}(L)=\left\{x \in L \mid f_{x}=0\right\}$, provided $\operatorname{char}(K) \neq 2,3$.
(Last result owed to Gabor Ivanyos)

Two algorithms - 1

Given n, the number of extremal generators, and possibly pairs (i, j) such that $[i, j]=0$:
i. Calculate (more or less monomial) basis for L :

- Suppose $f=0$,
- Use graded Gröbner basis algorithm [GBNP] to obtain a basis,
- Track process to obtain monomial basis,
- Written in GAP.

2. Find evaluation of f on these basis elements.

Two algorithms - 2

Given n, the number of extremal generators, and possibly pairs (i, j) such that $[i, j]=0$:
i. Calculate (more or less monomial) basis for L :
2. Find evaluation of f on these basis elements.

- Input: Basis from the first step,
- Try to apply rewrite rules and Jacobi identity,
- Find 'primitive evaluations' along the way,
- Written in C++.

Two algorithms - 3

Given n, the number of extremal generators, and possibly pairs (i, j) such that $[i, j]=0$:
i. Calculate (more or less monomial) basis for L :
2. Find evaluation of f on these basis elements.

Use the result of the second step to calculate $\operatorname{Rad}(f)$, and the dimension of the semi-simple part of L.

A Theorem - 1

Suppose the semi-simple Lie algebra L_{1} is generated (as a Lie algebra) by n extremal elements and no fewer, and the semi-simple Lie algebra L_{2} is generated (as a Lie algebra) by m extremal elements and no fewer. Then the semi-simple Lie algebra $L_{1}+L_{2}$ is generated by $n+m$ extremal elements and no fewer.

A Theorem - 2: Sketch of the proof

$L=L_{1}+L_{2}$. Suppose to the contrary that L is generated by less than $n+m$ extremal elements.

- Extremal basis elements x_{1}, \ldots, x_{N} and y_{1}, \ldots, y_{M}.
- L has a basis of extremal elements. wlog $z=x_{1}+y_{1}$ is among them. Then:

$$
f\left(x_{1}+y_{1}, x_{2}\right) z=f\left(z, x_{2}\right) z=\left[z,\left[z, x_{2}\right]\right]=\ldots=f\left(x_{1}, x_{2}\right) x_{1} .
$$

hence $f\left(z, x_{2}\right)=0$. Some reasoning shows $f_{z}=0$.

- So $\operatorname{dim}(\operatorname{Rad}(f)) \geq 1$. Contradiction.

TU/e

A Theorem - 3: Corollary

No 537 dimensional Lie algebra generated by five extremal elements exists.

TU/e

Examples - Introduction

- 4 extremal generators,
- $[x, y]=[x, z]=[y, z]=0$,
- $\langle x, u\rangle,\langle y, u\rangle,\langle z, u\rangle \cong \mathfrak{s l}_{2}$.

TU/e

Examples - Introduction

- 4 extremal generators,

- $[x, y]=[x, z]=[y, z]=0$,
- $\langle x, u\rangle,<y, u\rangle,<z, u\rangle \cong \mathfrak{s l}_{2}$.
- 12-dimensional

Examples - Introduction

- 4 extremal generators,
- $[x, y]=[x, z]=[y, z]=0$,
- $\langle x, u\rangle,\langle y, u\rangle,<z, u\rangle \cong \mathfrak{s l}_{2}$.
- 12-dimensional
- $\operatorname{dim}(\operatorname{Rad}(f))=9$

TU/e

Examples - Four generators

IO

I5

$2 I$

28

TU/e

Examples - Four generators

IO
C_{2}
I5
A_{3}

21
B_{3}

28
D_{4}

TU/e

Examples - Five generators

36

24

52

249

TU/e

Examples - Five generators

36
B_{4}

24
A_{4}

52
F_{4} ?

249
E_{8} ?

TU/e

Two Theorems

isomorphic to A_{n-1}.
isomorphic to C_{n}.

TU/e

Three Propositions

Conclusion

Done:

- Verified some results from [CSUWor]
- Considered degenerate cases
- Proved semi-simplicity theorem
- Proved two isomorphisms

To do in the remaining six weeks:

- Prove three propositions
- Improve second algorithm
- Finish report

TU/e

Questions?

References

[CSUWor] A. M. Cohen, A. Steinbach, R. Ushirobira, and D. Wales. Lie algebras generated by extremal elements. J. Algebra, 236(I):I22-154, 2001.
[ZK90] E. I. Zel'manov and A. I. Kostrikin. A theorem on sandwich algebras. Trudy Mat. Inst. Steklov., 183:1o6-iII, 225, i990. Translated in Proc. Steklov Inst. Math. 1991, no. 4, I2I-I26, Galois theory, rings, algebraic groups and their applications (Russian).

