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Lie Algebras - 1

A Lie algebra L is a vector space with a map [·, ·] : V × V → V such that

1. [·, ·] is bilinear,
2. [·, ·] is skew-symmetric:

[x, x] = 0 for all x ∈ L, and

3. [·, ·] satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

Note that in characteristic not 2, property 2. is equivalent to [x, y] = −[y, x].
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Lie Algebras - 2: An example

An example: gl(V ).

Let V be a vector space, and L the ring of linear transformations V → V .
Define [x, y] = xy − yx for x, y ∈ L.



12

/kJJ J N I II 5/31JJ J N I II 5/31

Lie Algebras - 3: Another example

The special linear Lie algebra sl2:

Let x =

(
0 1
0 0

)
and y =

(
0 0
1 0

)
and [x, y] = xy − yx. Then

z = [x, y] =

(
1 0
0 −1

)
and [x, z] = −2x and [y, z] = 2y.
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Lie Algebras - 4: Ideals

• Ideal: I is an ideal of L if

x ∈ L, y ∈ I ⇒ [x, y] ∈ I.

• Simplicity: L is called simple if it has no ideals except {0} and L.

• Semi-simplicity
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Lie Algebras - 5: Ideals

• Solvability: I is solvable if the sequence

L, [L, L], [[L, L], [L, L]], [[[L, L], [L, L]], [[L, L], [L, L]]], . . .

‘goes to zero’.

• Radical: Rad(L) is the largest solvable ideal.

• Theorem: L/Rad(L) is semi-simple.
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Lie Algebras - 6: Simple Lie algebras

The classical Lie algebras:

• An (n ≥ 1): sln+1, of dimension (n + 1)2 − 1,

• Bn (n ≥ 2): so2n+1, of dimension n(2n + 1),

• Cn (n ≥ 3): sp2n, of dimension n(2n + 1),

• Dn (n ≥ 4): so2n, of dimension n(2n− 1).

The special Lie algebras: G2, F4, E6, E7, E8.
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Extremal Elements - 1: Definition

• x ∈ L is called extremal if [x, [x, L]] ⊆ Kx.

• There exists a linear functional fx such that [x, [x, y]] = fx(y)x.
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Extremal Elements - 2: Example

The special linear Lie algebra sl2:

Let x =

(
0 1
0 0

)
and y =

(
0 0
1 0

)
and [x, y] = xy − yx. Then

z = [x, y] =

(
1 0
0 −1

)
and [x, [x, y]] = [x, z] = −2x and [y, [y, x]] = −[y, z] = −2y.

‘sl2 is generated by two extremal elements’
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Some results of CSUW01 - 1

Cohen, Steinbach, Ushirobira, Wales, 2001. Suppose L is generated by
finitely many extremal elements. Then:

• L is finite dimensional, and

• L is spanned by extremal elements.

(Using [ZK90])
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Some results of CSUW01 - 2
# Dimension General Lie algebra
2 3 A1
3 8 A2
4 28 ?
5 537 ?
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Some results of CSUW01 - 3

Simple Lie algebra Required extremal elements Condition
An n + 1 n ≥ 1
Bn n + 1 n ≥ 3
Cn 2n n ≥ 2
Dn n n ≥ 4

E6, E7, E8, F4 5
G2 4
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Some results of CSUW01 - 4

Suppose L is generated by finitely many extremal elements. Then:

• There exists a bilinear functional f : L×L → K with f (x, y) = fx(y).

• f is associative: f (x, [y, z]) = f ([x, y], z).

• Rad(L) = {x ∈ L | fx = 0}, provided char(K) 6= 2, 3.

(Last result owed to Gabor Ivanyos)
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Two algorithms - 1

Given n, the number of extremal generators, and possibly pairs (i, j) such
that [i, j] = 0:

1. Calculate (more or less monomial) basis for L:

• Suppose f = 0,

• Use graded Gröbner basis algorithm [GBNP] to obtain a basis,

• Track process to obtain monomial basis,

• Written in GAP.

2. Find evaluation of f on these basis elements.
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Two algorithms - 2

Given n, the number of extremal generators, and possibly pairs (i, j) such
that [i, j] = 0:

1. Calculate (more or less monomial) basis for L:

2. Find evaluation of f on these basis elements.

• Input: Basis from the first step,

• Try to apply rewrite rules and Jacobi identity,

• Find ‘primitive evaluations’ along the way,

• Written in C++.
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Two algorithms - 3

Given n, the number of extremal generators, and possibly pairs (i, j) such
that [i, j] = 0:

1. Calculate (more or less monomial) basis for L:

2. Find evaluation of f on these basis elements.

Use the result of the second step to calculate Rad(f ), and the dimension of
the semi-simple part of L.
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A Theorem - 1

Suppose the semi-simple Lie algebra L1 is generated (as a Lie algebra) by
n extremal elements and no fewer, and the semi-simple Lie algebra L2 is
generated (as a Lie algebra) by m extremal elements and no fewer. Then the
semi-simple Lie algebra L1 + L2 is generated by n + m extremal elements
and no fewer.
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A Theorem - 2: Sketch of the proof

L = L1 +L2. Suppose to the contrary that L is generated by less than n+m
extremal elements.

• Extremal basis elements x1, . . . , xN and y1, . . . , yM .

• L has a basis of extremal elements. wlog z = x1 + y1 is among them.
Then:

f (x1 + y1, x2)z = f (z, x2)z = [z, [z, x2]] = . . . = f (x1, x2)x1.

hence f (z, x2) = 0. Some reasoning shows fz = 0.

• So dim(Rad(f )) ≥ 1. Contradiction.
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A Theorem - 3: Corollary

No 537 dimensional Lie algebra generated by five extremal elements exists.
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Examples - Introduction

�u
�x �y

�
z

• 4 extremal generators,

• [x, y] = [x, z] = [y, z] = 0,

• < x, u >, < y, u >,< z, u >∼= sl2.
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Examples - Introduction

�u
�x �y

�
z

• 4 extremal generators,

• [x, y] = [x, z] = [y, z] = 0,

• < x, u >, < y, u >,< z, u >∼= sl2.

• 12-dimensional
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Examples - Introduction

�u
�x �y

�
z

• 4 extremal generators,

• [x, y] = [x, z] = [y, z] = 0,

• < x, u >, < y, u >,< z, u >∼= sl2.

• 12-dimensional

• dim(Rad(f )) = 9
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Examples - Four generators
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Examples - Four generators
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Examples - Five generators
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Examples - Five generators
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B4 A4 F4 ? E8 ?
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Two Theorems
1
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Three Propositions
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Conclusion

Done:

• Verified some results from [CSUW01]

• Considered degenerate cases

• Proved semi-simplicity theorem

• Proved two isomorphisms

To do in the remaining six weeks:

• Prove three propositions

• Improve second algorithm

• Finish report
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Questions?
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