

Lie Algebras _{generated by} Extremal Elements

Dan Roozemond

29 June 2005

TU/e technische universiteit eindhoven

Contents

- Introduction to Lie Algebras
- Extremal Elements
- Some existing results
- Two algorithms
- A theorem
- Examples
- Two theorems and three propositions
- Conclusion

Lie Algebras - 1

A Lie algebra L is a vector space with a map [·, ·] : V × V → V such that
I. [·, ·] is bilinear,
2. [·, ·] is skew-symmetric:

$$[x, x] = 0$$
 for all $x \in L$, and

3. $[\cdot,\cdot]$ satisfies the Jacobi identity:

 $[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0 \text{ for all } x,y,z \in L.$

Note that in characteristic not 2, property 2. is equivalent to [x, y] = -[y, x].

Lie Algebras - 2: An example

An example: $\mathfrak{gl}(V).$

Let V be a vector space, and L the ring of linear transformations $V \to V$. Define [x, y] = xy - yx for $x, y \in L$.

Lie Algebras - 3: Another example

The special linear Lie algebra \mathfrak{sl}_2 :

Let
$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

and [x, y] = xy - yx. Then

$$z = [x, y] = \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right)$$

and [x, z] = -2x and [y, z] = 2y.

Lie Algebras - 4: Ideals

• Ideal: I is an ideal of L if

$$x \in L, y \in I \Rightarrow [x, y] \in I.$$

- Simplicity: L is called simple if it has no ideals except $\{0\}$ and L.
- Semi-simplicity

Lie Algebras - 5: Ideals

• Solvability: *I* is solvable if the sequence

 $L, [L, L], [[L, L], [L, L]], [[[L, L], [L, L]], [[L, L], [L, L]]], \dots$

'goes to zero'.

- Radical: $\operatorname{Rad}(L)$ is the largest solvable ideal.
- Theorem: $L/\operatorname{Rad}(L)$ is semi-simple.

Lie Algebras - 6: Simple Lie algebras

The classical Lie algebras:

- A_n ($n \ge 1$): \mathfrak{sl}_{n+1} , of dimension $(n+1)^2 1$,
- B_n ($n \ge 2$): \mathfrak{so}_{2n+1} , of dimension n(2n+1),
- C_n ($n \ge 3$): \mathfrak{sp}_{2n} , of dimension n(2n+1),
- D_n ($n \ge 4$): \mathfrak{so}_{2n} , of dimension n(2n-1).

The special Lie algebras: G_2, F_4, E_6, E_7, E_8 .

Extremal Elements - 1: Definition

- $x \in L$ is called *extremal* if $[x, [x, L]] \subseteq Kx$.
- There exists a linear functional f_x such that $[x, [x, y]] = f_x(y)x$.

TU/e technische universiteit eindhoven

Extremal Elements - 2: Example

The special linear Lie algebra \mathfrak{sl}_2 :

Let
$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

and [x, y] = xy - yx. Then

$$z = [x, y] = \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right)$$

and [x, [x, y]] = [x, z] = -2x and [y, [y, x]] = -[y, z] = -2y.

' \mathfrak{sl}_2 is generated by two extremal elements'

Cohen, Steinbach, Ushirobira, Wales, 2001. Suppose L is generated by finitely many extremal elements. Then:

- $\bullet~L$ is finite dimensional, and
- L is spanned by extremal elements.

(Using [ZK90])

#	Dimension	General Lie algebra
2	3	A_1
3	8	A_2
4	28	?
5	537	?

Simple Lie algebra	Required extremal elements	Condition
A_n	n+1	$n \ge 1$
B_n	n+1	$n \ge 3$
C_n	2n	$n \ge 2$
D_n	n	$n \ge 4$
$E_{6}, E_{7}, E_{8}, F_{4}$	5	
G_2	4	

Suppose L is generated by finitely many extremal elements. Then:

- There exists a bilinear functional $f: L \times L \to K$ with $f(x, y) = f_x(y)$.
- f is associative: f(x, [y, z]) = f([x, y], z).
- $\operatorname{Rad}(L) = \{x \in L \mid f_x = 0\}$, provided $\operatorname{char}(K) \neq 2, 3$.

(Last result owed to Gabor Ivanyos)

TU/e technische universiteit eindhoven

Two algorithms - 1

Given n, the number of extremal generators, and possibly pairs (i,j) such that $[i,j]=0{\rm :}$

- ı. Calculate (more or less monomial) basis for L:
 - Suppose f = 0,
 - Use graded Gröbner basis algorithm [GBNP] to obtain a basis,
 - Track process to obtain monomial basis,
 - Written in GAP.
- 2. Find evaluation of f on these basis elements.

Two algorithms - 2

Given n, the number of extremal generators, and possibly pairs (i,j) such that $[i,j]=0{\rm :}$

- 1. Calculate (more or less monomial) basis for L:
- 2. Find evaluation of f on these basis elements.
 - Input: Basis from the first step,
 - Try to apply rewrite rules and Jacobi identity,
 - Find 'primitive evaluations' along the way,
 - Written in C++.

Two algorithms - 3

Given n, the number of extremal generators, and possibly pairs (i,j) such that $[i,j]=0{\rm :}$

- I. Calculate (more or less monomial) basis for L:
- 2. Find evaluation of f on these basis elements.

Use the result of the second step to calculate $\mathrm{Rad}(f)$, and the dimension of the semi-simple part of L.

A Theorem - 1

Suppose the semi-simple Lie algebra L_1 is generated (as a Lie algebra) by n extremal elements and no fewer, and the semi-simple Lie algebra L_2 is generated (as a Lie algebra) by m extremal elements and no fewer. Then the semi-simple Lie algebra $L_1 + L_2$ is generated by n + m extremal elements and no fewer.

A Theorem - 2: Sketch of the proof

 $L=L_1+L_2.$ Suppose to the contrary that L is generated by less than n+m extremal elements.

- Extremal basis elements x_1, \ldots, x_N and y_1, \ldots, y_M .
- *L* has a basis of extremal elements. wlog $z = x_1 + y_1$ is among them. Then:

$$f(x_1 + y_1, x_2)z = f(z, x_2)z = [z, [z, x_2]] = \ldots = f(x_1, x_2)x_1.$$

hence $f(z, x_2) = 0$. Some reasoning shows $f_z = 0$.

• So $\dim(\operatorname{Rad}(f)) \ge 1$. Contradiction.

A Theorem - 3: Corollary

No 537 dimensional Lie algebra generated by five extremal elements exists.

Examples - Introduction

- 4 extremal generators,
- [x, y] = [x, z] = [y, z] = 0,
- $\bullet < x, u >, < y, u >, < z, u > \cong \mathfrak{sl}_2.$

Examples - Introduction

- 4 extremal generators,
- [x, y] = [x, z] = [y, z] = 0,
- $\bullet < x, u>, < y, u>, < z, u> \cong \mathfrak{sl}_2.$
- 12-dimensional

Examples - Introduction

- 4 extremal generators,
- [x, y] = [x, z] = [y, z] = 0,
- $\bullet < x, u >, < y, u >, < z, u > \cong \mathfrak{sl}_2.$
- 12-dimensional
- $\dim(\operatorname{Rad}(f)) = 9$

Examples - Four generators

Examples - Four generators

Examples - Five generators

Examples - Five generators

Two Theorems

isomorphic to A_{n-1} .

isomorphic to C_n .

Three Propositions

Conclusion

Done:

- Verified some results from [CSUWo1]
- Considered degenerate cases
- Proved semi-simplicity theorem
- Proved two isomorphisms

To do in the remaining six weeks:

- Prove three propositions
- Improve second algorithm
- Finish report

Questions?

References

- [CSUW01] A. M. Cohen, A. Steinbach, R. Ushirobira, and D. Wales. Lie algebras generated by extremal elements. J. *Algebra*, 236(1):122–154, 2001.
- [ZK90] E. I. Zel'manov and A. I. Kostrikin. A theorem on sandwich algebras. *Trudy Mat. Inst. Steklov.*, 183:106–111, 225, 1990. Translated in Proc. Steklov Inst. Math. 1991, no. 4, 121–126, Galois theory, rings, algebraic groups and their applications (Russian).