Symbolic Computation Software Composability

Sebastian Freundt', Peter Horn?, Alexander Konovalov?,
Steve Linton® and Dan Roozemond*

! Fakultét II - Institut fiir Mathematik, Technische Universitét Berlin,
Berlin, Germany
freundt@math.tu-berlin.de
2 Fachbereich Mathematik, Universitat Kassel, Kassel, Germany
hornp@mathematik.uni-kassel.de
3 School of Computer Science, University of St Andrews, Scotland
{alexk,sal}@mcs.st-and.ac.uk
4 Department of Mathematics and Computer Science, Technische Universiteit

Eindhoven, Netherlands
d.a.roozemond@tue.nl

Abstract. We present three examples of the composition of Computer
Algebra Systems to illustrate the progress on a composability infras-
tructure as part of the SCIEnce (Symbolic Computation Infrastructure
for Europe) projectﬂ One of the major results of the project so far is
an OpenMath based protocol called SCSCP (Symbolic Computation
Software Composability Protocol). SCSCP enables the various software
packages for example to exchange mathematical objects, request calcula-
tions, and store and retrieve remote objects, either locally or accross the
internet. The three examples show the current state of the GAP, KANT,
and MuPAD software packages, and give a demonstration of exposing
Macaulay using a newly developed framework.

1 Introduction

The SCIEnce project (Symbolic Computation Infrastructure for Europe) [25]
brings together the developers of four powerful symbolic computation software
packages (GAP []], KANT [I4], Maple [I7], and MuPAD [19]), a major symbolic
computation research institute (RISC-Linz [21]), and research groups expert in
essential underpinning technologies (CNRS Palaiseau (France) [4], TU Eind-
hoven (Netherlands) [6], IeAT (Romania) [13] and Heriot-Watt University (UK)
[F]). The aim is to unite the European community of researchers in, and users
of, symbolic computation.

In this paper we report on one of the activities the SCIEnce project consists of,
namely NAS3: Software Composability. This activity focuses on the development
and implementation of standards in order for the various Computer Algebra
Systems (CASes) to communicate. The main goal of this activity is to allow
these systems to be efficiently composed to solve complex problems.

! The project 026133 “SCIEnce—Symbolic Computation Infrastructure for Europe”
is supported by the EU FP6 Programme.

S. Autexier et al. (Eds.): AISC/Calculemus/MKM 2008, LNAI 5144, pp. 285-[Z35] 2008.
© Springer-Verlag Berlin Heidelberg 2008

286 S. Freundt et al.

This part of the project has some common concerns with the well known
SAGE project [22], as both projects try to unite several mathematical soft-
ware packages. There are, however, important differences. SAGE presents itself
as an integrated system in which users interact with the SAGE frontend and
the contributing CASes are used as backend servers. Our goal in the SCIEnce
project is to create a framework that will allow services to be both provided
and consumed by any CAS. An important technical difference is that we use
an existing language for representing mathematical objects, namely OpenMath
[20], whereas SAGE uses a custom internal representation. We expect the use
of OpenMath to facilitate third party developers to expose their software using
SCSCP — although the conversion to and from the XML-based OpenMath for-
mat is potentially more time-consuming, we obtain a stable system-independent
representation.

We illustrate the progress made in this activity by means of three examples.
First, we introduce the Computer Algebra Systems involved in Section 2l and
the OpenMath standard in Section[3 We give an overview of the newly designed
protocol for the composition of symbolic computation software, SCSCP, in Sec-
tion [l The first example is the factorization in KANT of polynomials created in
MuPAD (Section[Hl). In the second example (Section[d]) we show a Grobner basis
computation executed in Macaulay on polynomials created in GAP. The third
example (Section [7) demonstrates cross-platform use of GAP using SCSCP.
Comments on the current status and intended future research can be found in
Section

2 The Computer Algebra Systems Involved

In this section, we briefly describe the four computer algebra systems involved
in the SCIEnce project.

GAP [§] is a free, open and extendable system for computational discrete
algebra, with particular emphasis on Computational Group Theory. GAP pro-
vides a programming language, a library of thousands of functions implementing
algebraic algorithms written in the GAP language as well as large data libraries
of algebraic objects. GAP is developed by international cooperation of many
contributors, and coordinated by the four GAP centers: Aachen (Germany),
Braunschweig (Germany), Fort Collins (USA), and St Andrews (UK).

KANT [I4] is a computer algebra system for sophisticated computations in
algebraic number fields that has been developed at Technische Universitéit Berlin.
The KANT functions are accessible through a user-friendly shell named KASH
(KAnt SHell) that is freely available.

Maple [I7] is the general purpose computer algebra system developed in Wa-
terloo, Canada. Its latest features include an intuitive smart document environ-
ment and embedded GUI components such as buttons and sliders.

MuPAD Pro [19] is a general purpose computer algebra system for exact
symbolic and numeric computing with arbitrary precision. It provides a Pascal-
like programming language allowing imperative, functional, and object-oriented

Symbolic Computation Software Composability 287

GAP KANT Maple MuPAD P

; (f)penMat}J

Software

vJava/ Cc/

Python / ...
arithl integerl polyd1 : :software‘ ——

cAs "/j:nvate" lan ufage

Content Dictionaries L | C AS
CAS
OoMI [e]\Y OMA
The OpenMath Language
Fig. 1. OpenMath structure Fig. 2. CAS implementations

programming. MuPAD is developed by the SciFace company, based in Pader-
born, Germany. The SCIEnce development with respect to MuPAD is performed
at the University of Kassel, Germany [20].

3 OpenMath

The OpenMath standard is made for the representation of mathematics in such
a way that mathematical objects can easily be exchanged between computer
programs by way of rich semantics. A rough overview of this standard can be
found in Figure[Il The 3 layers are explained as follows:

Language. The OpenMath language defines the grammar, i.e., notions such as
Variables, Errors, Applications, Integers, etc.

Content Dictionary. A Content Dictionary (CD) is a document describing
mathematical notions for some area of Mathematics. At the moment of writ-
ing about 180 content dictionaries are provided on the OpenMath homepage,
both official and experimental. They cover not only general areas, such as ba-
sic arithmetic (for example the ‘arithl’” CD describes ‘minus’, ‘plus’, ‘power’,
etc) or polynomials, but also more specific areas such as permutation groups,
planar geometry, finite fields, and much more.

Software. This third layer consists of all software built using the basic language
and content dictionaries, commonly referred to as “Phrasebooks”. In Figure
the two most common approaches in our setting are described.

First the piece of translator software separate from the CAS: this software
(commonly written by a third party) takes care of the translation from Open-
Math into the CAS proprietary language, and back. Especially the transla-
tion back can be highly non-trivial, as the semantics of the CAS output
cannot always be read off from the output itself.

The second option is a piece of translator software that is built into the
CAS. The disadvantage is that one needs to have access to the source code,
which is not always possible. On the other hand, the major advantage of

288 S. Freundt et al.

this approach is that generally the translation can be done using the internal
representation of mathematical objects in the CAS.

The most common representation for OpenMath is the XML-representation.

For example, 3 — ‘51 could be represented as follows:

<0OMA><0MS cd="arithl" name="minus"/>
<0MI>3</0MI>
<0OMA><0MS cd="numsl1l" name="rational"/>
<0OMI>4</0MI>
<0MI>5</0MI>
</0MA>
</0MA>

4 SCSCP

To simplify the communication between the various CASes, we have developed
a protocol called “Symbolic Computation Software Composability Protocol”,
abbreviated SCSCP. The protocol is XML-based; in particular, the protocol
messages are in the OpenMath language, and its TCP-sockets-based implemen-
tation uses XML processing instructions to delimit these messages and indicate
major failures that may arise during the processing of a request. Communica-
tion takes place using port 26133, reserved for SCSCP by the Internet Assigned
Numbers Authority (IANA).

We have developed two Content Dictionaries for SCSCP, called scscpl and
scscp2. The protocol supports calling functions with mathematical objects as
arguments, on either a local or remote system, and sending back successful results
or failure reports. It also supports basic options such as limits on memory or CPU
and information such as memory or CPU time used.

Moreover, SCSCP has support for remote objects. The client may indicate
a preference for the reply to either contain a full mathematical object, or a
reference to that same object. We envisage a scenario where a client can let
almost all computations be performed remotely, possibly in another CAS, and
where details of mathematical objects are not transmitted unless necessary.

An example of a call to a CAS and a response follows:

<0MOBJ>
<OMATTR >

<OMATP>
<0OMS cd="scscpl" name="call_ID"/>
<0OMSTR>a1d0c6e83f027327d8461063f4ac58a6 </0OMSTR>
<0OMS cd="scscpl" name="option_max_memory"/>
<0MI>100000</0MI>
<0MS cd="scscpl" name="option_return_object"/>
<0OMSTR/>

</OMATP>

<0OMA>
<0MS cd="scscpl" name="procedure_call"/>

Symbolic Computation Software Composability 289

<0OMSTR>Evaluate </0OMSTR>

<0MA>
<0MS cd="arithl" name="plus"/>
<0MI>16603777328095411 </0MI>
<0OMI >9529248804930722</0MI>

</0MA >

</0MA >
</0OMATTR >
</0MOBJ>

with response

<0MOBJ>
<OMATTR >
<OMATP>
<0OMS cd="scscpl" name="call_ID"/>
<0OMSTR>a1d0c6e83f027327d8461063f4ac58a6 </0MSTR>
<0MS cd="scscpl" name="info_runtime"/>
<0MI>3</0MI>

<0OMS cd="scscpl" name=”info_memory"/>
<0MI>2876</0MI>

</0OMATP >

<0MA>

<0MS cd="scscpl" name="procedure_completed"/>
<0MI>26133026133026133 </0MI>
</0MA>
</0OMATTR >
</0MOBJ >

More details and examples can be found in the specification [I5] and the two
Content Dictionaries [23], [24].

Basic SCSCP support, both as server and as client, is now available for devel-
opment versions of GAP, KANT, and MuPAD. This means that a user of one of
these software packages can invoke one of the other systems (or the same system
on a different machine) without leaving the software packages he is working in
himself. In particular, one uses GAP syntax to use SCSCP from within GAP,
for example, even though one may be calling out to KANT.

We have also created a Java implementation of SCSCP, intended as a frame-
work to enable third party developers to expose their software easily to e.g. users
of one of the systems involved.

Furthermore, as SCSCP is a specialized protocol, it would have to be im-
plemented in a each software package to allow access to the capabilities of the
systems involved. In order to offer access by means of a more widely used proto-
col than SCSCP, we have developed a WebProxy that connects to an arbitrary
number of SCSCP-compliant systems and offers a SOAP-interface as well as a
simplistic html-interface to these systems.

One of the other parallel activities in the SCIEnce project is JRA1: Symbolic
Computing on the Grid, which focuses on developing a suitable framework for

290 S. Freundt et al.

ITTP/SOAP
requests

Web
services
server

SCSsCP
essage:

SCSCP messages
ITTP/SOAP
requests

SCSCP messages

Fig. 3. SCSCP Overview

symbolic computing on computational grids. In this activity SCSCP is used for
the communication between the server and the various systems.

5 Using KANT from MuPAD

As a first example, we consider factoring of polynomials defined similarly to
Swinnerton-Dyer polynomials, but without the requirement that the primes are
consecutive: for a set of distinct prime numbers p1,po,...,p,, we define the
polynomial P, (x) as

Pu(z) = [[(z £ Vo1 £ /2. .. £ V/p),

where the product runs over all possible combinations of plus and minus signs,
yielding 2" factors in total. Hence the degree of such a polynomial is 2.

This polynomial is easily seen to be irreducible over Z. On the other hand,
suppose F is a finite field; then P, splits into linear factors over a quadratic
extension of I, so it will only have linear and quadratic factors over F itself. In
particular, P, (n > 1) is reducible over every finite field.

These polynomials are worst-case inputs for the Berlekamp-Zassenhaus algo-
rithm for the factoring of polynomials over Z. See [9], Section 15.3] for more
information.

Symbolic Computation Software Composability 291

>> package ("OpenMath"):

>> swindyer :=proc(plist) <some details omitted>

>> R := Dom::UnivariatePolynomial (x, Dom::Rational):

>> pl R(expand (swindyer ([2,3,5,7,11]))):

>> p2 R(expand (subs (swindyer ([2,3,5,7,13,17])), x=3%x-2)):
>> p := pl * p2:

>> degree(p), nterms(p)

96, 49

So at this point we have constructed a univariate polynomial p, the product
of two of these Swinnerton-Dyer like polynomials, with an affine transformation
applied to the argument of the second one. It has 49 terms and degree 96 =
25 + 26,
>> st := time(): F1 := factor(p): time()-st
38431

So factoring it in MuPAD takes 38 seconds.

On the other hand, KANT has one of the fastest univariate polynomial fac-
torizers available. If we convert the polynomial into OpenMath, transmit it to a
machine running KANT almost 400 kilometers away, convert it to KANT syn-
tax, factor it, convert it back into OpenMath, transmit it back to the original
machine, and finally convert it back into MuPAD syntax:

>> kant := SCSCP("scscp.math.tu-berlin.de", 26133):
>> st:=rtime(): F2:=kant::compute (hold(factor)(p)):rtime()-st
1221

So factoring in KANT only takes 1.2 seconds. To verify that the two results have
the same factors:

>> FS1 := {op(Factored::factors(F1))}:

>> FS2 := {op(map(F2, X -> R(subs(expr ((X[1]1)), ‘#1¢=x))))}:
>> bool (FS1=FS2)

TRUE

The two-line conversion of the object KANT returns is necessary because one
needs to explicitly state that this object F'S2 is to be in the same polynomial
ring that the original polynomial p was in.

The OpenMath objects are transmitted in uncompressed XML syntax, a few
kilobytes for polynomials of this order of magnitude. Moreover, even though at
this stage of the project no particular effort has been put into optimizing the
conversions between CAS syntax and OpenMath, in our case these translations
take only about 20 milliseconds each.

6 Using Macaulay from GAP

Using the framework mentioned earlier, we have created an SCSCP interface to
Macaulay 2 [I0]. We use this interface to perform a Grobner basis computation
on polynomials created in GAP. These polynomials can be used to create an
automatic proof of the circle theorem of Apollonius.

292 S. Freundt et al.

gap> R := PolynomialRing (Rationals,

> ["a","b","s","y","m1","m2","p1","p2"1);;

gap> a ;5 b 1= R.2;; s := R.3;; y := R.4;

gap> ml := R.5;; m2 := R.6;; pl := R.7;; p2 :=

gap> pols := [

> (ml1-a)~"2 + m2°2 - s72,

ml1~2 + (m2-b)"2 - s°2

(m1-a)~2 + (m2-b)"2 - s~2,
-2%a*xpl+2xb*p2,
-2xa*p2-2%b*pl+2xa*x2xb,
a*b*xy-1

155

]
o
-

R.8;;

3

vV V.V V Vv VvV

We have created a polynomial ring in 8 variables over Q, and a list of 6 poly-
nomials. We can try to compute a Grébner Basis (with respect to the graded
reverse lexicographic ordering) in GAP:

gap> B := GroebnerBasis (pols, MonomialGrevlexOrdering());

but the computation does not end within 30 minutes. We can also use the
Macaulay 2 interface we created:

gap> I := Ideal(R, pols);;
gap> B2 := EvaluateBySCSCP ("Macaulay2 -Groebner", [I],
> "scscp.win.tue.nl", 26133);;

#I Creating a socket

#I Connecting to a remote socket via TCP/IP

#I Got connection initiation message

#I Request sent

#I Waiting for reply

gap> B2.object;

[b-2*m2, a-2*ml, -4*m2*p2+pl~2+p2°2, mi*pl-m2*p2,
4*ml*m2-ml*p2-m2*pl, s72-m17°2-m272, y*ml*xp2+y*m2*pl-1,
4xy*m2~2%xp2-pl, 4*xyxml " 2*p2-4xml+pl]

This calculation took only a few seconds. Moreover, the majority of the time is
actually spent in the conversion of OpenMath to Macaulay syntax and back, so
an even larger improvement could be obtained by optimization of this translation.

7 Further GAP Examples

The previous section demonstrated GAP as an SCSCP client. Here we would
like to give one more example of the use of GAP as an SCSCP server with the
development version of the GAP package SCSCP [16]. We will outline simple
steps needed for the design and provision of the SCSCP service within the
framework provided by SCSCP.

The GAP Small Groups Library [2] contains all groups of orders up to 2000,
except groups of order 1024. The GAP command SmallGroup(n,i) returns the
i-th group of order n. Moreover, for any group G of order 1 < |G| < 2000 where
|G| & {512,1024}, GAP can determine its library number: the pair [n,i] such

Symbolic Computation Software Composability 293

that G is isomorphic to SmallGroup(n,i). This is in particular the most efficient
way to check whether two groups of “small” order are isomorphic or not.

For groups of order 512 the Small Groups Library contains all 10494213 non-
isomorphic groups of this order and allows the user to retrieve any group by its
library number, but it does not provide an identification facility. However, the
GAP package ANUPQ [7] provides a function IdStandardPresented512Group
that performs the latter task. Because the ANUPQ package only works in a
UNIX environment it is useful to design an SCSCP service for identification of
groups of order 512 that can be called from within GAP sessions running on
other platforms (note that the client version of the SCSCP package for GAP
does work under Windows).

First we need to decide how the client should transmit a group to the server:
How should the group be encoded in OpenMath? Should it be converted into a
permutation representation, which can be encoded using existing content dictio-
naries? Or should we develop new content dictionaries for other kinds of groups?
Luckily, the SCSCP protocol provides enough freedom for the user to select
his own data representation, and since we are interfacing between two copies of
the GAP system, we are free to use a GAP-specific data format, namely the
pegs code: an integer, describing the polycyclic generating sequence (pegs) of the
group, to pass the data to the server. See the GAP manual and [I] for more
details about the pcgs code.

First we create a function that takes the pcgs code of a group of order 512
and returns the number of this group in the GAP Small Groups library:

gap> IdGroup512ByCode := function(code)

> local G, F, H;

> G := PcGroupCode (code, 512);

> F := PqgStandardPresentation(G);

> H := PcGroupFpGroup(F);

> return IdStandardPresented512Group(H);
> end;;

After such a function was created on the server, we need to make it “visible” as
an SCSCP procedure under the name IdGroup512:

gap> InstallSCSCPprocedure ("IdGroup512", IdGroup512ByCode);
InstallSCSCPprocedure : procedure IdGroup512 installed.

For the convenience of the user, we provide the client’s counterpart for this
service, carrying all technical details (server, port) and also checking that the
group is of order 512:

gap> IdGroup512:=function(G)

> local code, result;

if Size(G) <> 512 then

Error("|G|<>512\n");

fi;

code := CodePcGroup(G);

result := EvaluateBySCSCP ("IdGroup512ByCode", [code 1],
"scscp.st-and.ac.uk", 26133);

vV V. V V Vv VvV

294 S. Freundt et al.

> return result.object;
> end;;

Now when the client calls the function IdGroup512, it looks almost like the stan-
dard GAP function IdGroup (the user may switch off intermediate information
messages):

gap> IdGroup512(DihedralGroup (512));

#I Creating a socket

#I Connecting to a remote socket via TCP/IP

#I Got connection initiation message

#I ~Request sent

#I Waiting for reply

[512, 2042]

The GAP package SCSCP also offers functionality for parallel computations
that may be used for example on a multi-core machine. It provides convenient
functions for the user to parallelize computation by sending out two or more
requests, and then collect either all results or (in the case when several methods
are used for the same computation and it is not a priori clear which one will be
fastest) get the first available result. More higher-level examples are contained
in the package’s manual which is available upon request and will be a part of
the official release of the package.

8 Status and Future Research

At the moment of writing (March 2008) we implemented support for communica-
tions using SCSCP, both as servers and as clients, for the development versions
of GAP, KANT, and MuPAD. Also, progress is being made with respect to
OpenMath and SCSCP support in Maple. A part of ongoing work is to extend
the range of mathematical objects that are understood by our systems, i.e., to
enable translations from and to OpenMath for a wider set of OpenMath con-
tent dictionaries. We expect OpenMath support to be improved over the year
2008, greatly increasing the possibilities for exchanging mathematics between
the various computer algebra systems.

As demonstrated, currently we expose the systems involved as SCSCP ser-
vices. Future research includes using SCSCP to expose these systems as proper
Web services, i.e. extending the WebProxy. We may also look into experience
accumulated in the MONET project [18] and other existing technologies such as
MathServe [I1] and MathBroker II [12].

Furthermore, while developing this protocol we discovered that we have some
need for representing mathematical objects in OpenMath that are not met by the
current set of content dictionaries. This includes, for example, finitely presented
groups, character tables of finite groups, and efficient representation of large
matrices over finite fields. We plan to investigate these difficulties and create
new content dictionaries where necessary.

Symbolic Computation Software Composability 295

Acknowledgement. The authors wish to thank the anonymous reviewers for
their useful comments.

References

1. Besche, H.U., Eick, B.: Construction of finite groups. J. Symbolic Comput. 27(4),
387404 (1999)

2. Besche, H.U., Eick, B., O’Brien, E.: The Small Groups Library,
http://www-public.tu-bs.de:8080/~beick/soft/small/small.html

3. The Centre for Interdisciplinary Research in Computational Algebra (St Andrews,
Scotland), http://www-circa.mcs.st-and.ac.uk/
4. CNRS, Ecole Polytechnique (Palaiseau, France), http://www.polytechnique.fr/
5. The Dependable Systems Research Group at Heriot-Watt University, Edinburgh,
Scotland, http://www.macs.hw.ac.uk/~dsg/content/public/home/home.php
6. The Discrete Algebra and Geometry group at the Technical University of Eind-
hoven, Netherlands, http://www.win.tue.nl/dw/dam/

7. Gamble, G., Nickel, W., O’Brien, E.: ANUPQ — ANU p-Quotient, GAP4 package,
http://www.math.rwth-aachen.de/~Greg.Gamble/ANUPQ/

8. The GAP Group: GAP — Groups, Algorithms, and Programming,
http://www.gap-system.org

9. Von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge (1999)

10. Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in al-
gebraic geometry, http://www.math.uiuc.edu/Macaulay2/

11. The MathServe Framework, http://www.ags.uni-sb.de/~ jzimmer/mathserve.html

12. MathBroker II: Brokering Distributed Mathematical Services,
http://www.risc.uni-linz.ac.at/research/parallel/projects/mathbroker2/

13. Institute e-Austria Timisoara, Romania, http://www.ieat.ro/

14. The KANT group at the Technical University of Berlin, Germany,
http://www.math.tu-berlin.de/~kant/

15. Freundt, S., Horn, P., Konovalov, A., Linton, S., Roozemond, D.: Symbolic Com-
putation Software Composability Protocol (SCSCP) Specification, Version 1.1.
CIRCA (preprint, 2008), http://www.symbolic-computation.org/scscp/

16. Konovalov, A., Linton, S.: SCSCP — Symbolic Computation Software Compos-
ability Protocol. GAP 4 package

17. Maplesoft, Inc, Waterloo, Canada, http://www.maplesoft.com/

18. MONET, http://monet.nag.co.uk/

19. MuPAD, http://www.sciface.com

20. OpenMath, http://www.openmath.org

21. RISC-Linz, Austria, http://www.risc.uni-linz.ac.at/

22. SAGE: Open Source Mathematics Software, http://www.sagemath.org/

23. Roozemond, D.: OpenMath Content Dictionary: scscpl,
http://www.win.tue.nl/SCIEnce/cds/scscpl.html

24. Roozemond, D.: OpenMath Content Dictionary: scscp2,
http://www.win.tue.nl/SCIEnce/cds/scscp2.html

25. Symbolic Computation Infrastructure for Europe,
http://www.symbolic-computation.org/

26. Research Group Computational Mathematics, Department of Mathematics, Uni-
versity of Kassel, Germany, http://www.mathematik.uni-kassel.de/compmath

http://www-public.tu-bs.de:8080/~beick/soft/small/small.html
http://www-circa.mcs.st-and.ac.uk/
http://www.polytechnique.fr/
http://www.macs.hw.ac.uk/~dsg/content/public/home/home.php
http://www.win.tue.nl/dw/dam/
http://www.math.rwth-aachen.de/~Greg.Gamble/ANUPQ/
http://www.gap-system.org
http://www.math.uiuc.edu/Macaulay2/
http://www.ags.uni-sb.de/~jzimmer/mathserve.html
http://www.risc.uni-linz.ac.at/research/parallel/projects/mathbroker2/
http://www.ieat.ro/
http://www.math.tu-berlin.de/~kant/
http://www.symbolic-computation.org/scscp/
http://www.maplesoft.com/
http://monet.nag.co.uk/
http://www.sciface.com
http://www.openmath.org
http://www.risc.uni-linz.ac.at/
http://www.sagemath.org/
http://www.win.tue.nl/SCIEnce/cds/scscp1.html
http://www.win.tue.nl/SCIEnce/cds/scscp2.html
http://www.symbolic-computation.org/
http://www.mathematik.uni-kassel.de/compmath

	Symbolic Computation Software Composability
	Introduction
	The Computer Algebra Systems Involved
	OpenMath
	SCSCP
	Using KANT from MuPAD
	Using Macaulay from GAP
	Further GAP Examples
	Status and Future Research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

