
TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

MASTER’S THESIS

Lie Algebras Generated
by Extremal Elements

by
D.A. Roozemond

Supervisor: Prof. Dr. A.M. Cohen

Eindhoven, August 2005

Abstract

A Lie algebra L is a vector space over the field F accompanied by a bilinear map [·, ·] :
L × L → L which is skew-symmetric (i.e. [x, x] = 0 for all x ∈ L) and satisfies the
Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L. Lie algebras
have their applications for example in physics (see for example [SW86] or [BK90]), and
in the study of differential equations (see for example the PhD thesis by Jan Draisma
[Dra02]).

An element x ∈ L is called an extremal element if [x, [x, L]] ⊆ Fx. In this Master’s
thesis we study Lie algebras generated by finitely many extremal elements, building on
results by Cohen, Steinbach, Ushirobira, and Wales [CSUW01]. In that paper various
important properties of Lie algebras generated by extremal elements are proved, for ex-
ample the fact that a Lie algebra generated by finitely many extremal elements is always
finite dimensional. It is also proved that all simple Lie algebras can be generated by ex-
tremal elements. Moreover, the two and three extremal generator cases are extensively
studied.

In this Master’s thesis we continue with the four and five extremal generator cases.
Let Sn be the set of Lie algebras generated by n extremal elements. Cohen et al. proved
that both S2 and S3 contain a semi-simple Lie algebra of maximal dimension, A1 and
A2, respectively. We find that also S4 contains a semi-simple Lie algebra of maximal
dimension, namely D4. However, we prove that the maximal dimension occurring in
S5 is 537, and that no 537-dimensional semi-simple Lie algebra occurs in S5.

Moreover, we study degenerate cases of Lie algebras generated by four or five ex-
tremal elements, i.e. instances where one or more pairs of the generating extremal
elements commute. Lastly, we show how the simple Lie algebras An and Cn can be
generated by extremal elements.

2

Contents

1 Introduction 5

2 Lie Algebras - An Introduction 7
2.1 Definition . 7
2.2 Representations . 9
2.3 Ideals . 9
2.4 Simple Lie Algebras . 10
2.5 Solvability and Nilpotency . 11
2.6 Universal Enveloping Algebras . 13

3 Extremal Elements 15
3.1 Introduction . 15
3.2 Lie Algebras Generated by Extremal Elements 18
3.3 The Radical and the Bilinear Form f . 19
3.4 Generating Semi-Simple Lie Algebras 22

4 Lie Algebras Generated by Two Extremal Elements 25
4.1 Structure . 25
4.2 Classification by Structure Constants . 26

5 Lie Algebras Generated by Three Extremal Elements 27
5.1 Dimension . 27
5.2 Structure . 27
5.3 Classification by Structure Constants . 29

6 Lie Algebras Generated by Four Extremal Elements 31
6.1 Dimension . 31
6.2 Classification by Structure Constants . 33
6.3 Using GAP to Find the Structure . 35
6.4 The Nilpotent Case and Beyond . 37
6.5 Analysis of Degenerate Cases . 39

7 Intermezzo: Algorithms 41
7.1 Algorithm I . 41
7.2 Algorithm II . 42
7.3 Algorithm III . 43

8 Lie Algebras Generated by Five Extremal Elements 45
8.1 Structure . 45
8.2 Analysis of Degenerate Cases . 46
8.3 Isomorphic Degenerate Cases . 49

3

4 CONTENTS

9 Lie Algebras Generated by n Extremal Elements 53
9.1 An . 53
9.2 Cn . 57
9.3 An Revisited . 61
9.4 Three Conjectures . 63

10 Conclusion and Recommendations 65

Bibliography 67

Index 69

A Simple Lie Algebras 71

B Multiplication Tables 73

C GAP Code 75
C.1 Three Generator Case . 75
C.2 Algorithm I . 76
C.3 Algorithm II - Step 1 . 81

Chapter 1

Introduction

There is no branch of mathematics, however abstract, which
may not someday be applied to the phenomena of the real world.

– Nicolai Lobachevsky (1793-1856) [MQ]

A Lie algebra L is a vector space over the field F accompanied by a bilinear map
[·, ·] : L × L → L which is skew-symmetric (i.e. [x, x] = 0 for all x ∈ L), and which
satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

Lie algebras have their applications for example in physics (see for example [SW86]
or [BK90]), and in the study of differential equations (see for example the PhD thesis
by Jan Draisma [Dra02]). To get a feeling for the applications in physics it might be
worth skimming through Chapter 4 of [SW86]. Section 1.2 of [Dra02] provides an
excellent overview of the connection between ordinary differential equations and finite
dimensional Lie algebras.

An element x ∈ L is called an extremal element if we have [x, [x, y]] ∈ Fx for each
y ∈ L. In this Master’s thesis we study Lie algebras generated by finitely many extremal
elements, especially those generated by four or five extremal elements. Applications
for extremal elements stem from the fact that long root elements are extremal in Lie
algebras of Chevalley type. They were used by Chernousov [Che89] in his proof of the
Hasse principle for E8. Sandwich elements, elements x ∈ L with [x, [x, y]] = 0 for all
y ∈ L, are a special kind of extremal elements, with an application in Lie algebras over
fields of small characteristic [PS97].

In order to study Lie algebras generated by extremal elements we start with small
cases, i.e. Lie algebras generated by a few extremal elements, and try to find patterns.
Cohen et al. extensively study the two and three generator case [CSUW01], derive vari-
ous important basic properties of Lie algebras generated by extremal elements, and give
bounds on the number of extremal elements required to generate simple Lie algebras.
In this Master’s thesis we build on their results, and extensively study the four and five
generator cases. We prove that the five generator case significantly differs from the
smaller cases (see Section 8.1), and we show how two of the four classical Lie algebras
are generated by extremal elements (see Chapter 9).

Chapter 2 of this report contains a general introduction to Lie algebras (inspired
mainly by [Hal03] and [Hum72]) and Chapter 3 contains a general introduction to ex-
tremal elements. Though this chapter was mainly inspired by [CSUW01], Section 3.4
contains a new result. In Chapters 4 and 5 we consider Lie algebras generated by two

5

6 CHAPTER 1. INTRODUCTION

and three extremal elements, respectively. These chapters serve both as an overview of
the results of [CSUW01] and as an introduction to the following chapters.

In Chapter 6 we consider Lie algebras generated by four extremal elements. The
first part of this chapter contains results from [CSUW01], but Sections 6.2 through 6.5
are new. In Chapter 7 we give an overview of the algorithms introduced in the previous
chapter, and we introduce a new algorithm. Chapter 8 contains the analysis of Lie
algebras generated by five extremal elements, almost entirely composed of new results.
Especially the extensive analysis of degenerate cases in Section 8.2 appears to be new
information. This analysis is a result of the algorithms described in Chapter 7.

Lastly, Chapter 9 contains three theorems and three conjectures on Lie algebras
generated by arbitrary many extremal elements. A conclusion and some recommenda-
tions can be found in Chapter 10.

Unless mentioned otherwise, we work over fields of characteristic 0. To avoid con-
fusion, we write ‘generated’ if and only if we mean ‘generated as a Lie algebra’, and we
write ‘spanned’ if and only if we mean ‘linearly generated’.

Following good practice, I end this introduction with some acknowledgements.
First of all, I would like to thank Prof. Dr. A.M. Cohen, my supervisor, for the in-
spiring conversations, his valuable suggestions, and the thorough remarks he gave on
proofs and various versions of this report. Furthermore, my acknowledgements go to
Dr. F.G.M.T. Cuypers and Prof. Dr. Ir. J. de Graaf for being members of my graduation
committee and for their useful comments on earlier versions of this report. I should
also thank Willem de Graaf (University of Trento) for the short yet clarifying e-mail
discussion we had about his work on this particular subject.

Dan Roozemond, August 2005

Chapter 2

Lie Algebras - An Introduction

This chapter presents an introduction to Lie algebras in general. Many great books exist
on this topic, for instance the classic ‘Introduction to Lie Algebras and Representation
Theory’ by James E. Humphreys [Hum72] or ‘Lie Algebras’ by Nathan Jacobson [Jac62].
For a thorough introduction one might also consult [Hal03] or [Var84]. Some very nice
notes on the topic were written by Serre [Ser87], and for an introduction a bit more
focussed on applications refer to [SW86]. This chapter was mainly inspired by [Hal03]
and [Hum72].

2.1 Definition

Because this chapter provides an introduction to Lie algebras, it is only logical to start
by defining the notion Lie algebra.

Definition 2.1. (Lie Algebra) A finite-dimensional Lie Algebra is a finite-dimensional
vector space L over a field F together with a map [·, ·] : L× L→ L, with the following
properties:

1. [·, ·] is bilinear: [x+ v, y] = [x, y] + [v, y] for all x, v, y ∈ L and [αx, y] = α[x, y]
for all x, y ∈ L and α ∈ F, [x, y + w] = [x, y] + [x,w] for all x, y, w ∈ L and
[x, βy] = β[x, y] for all x, y ∈ L and β ∈ F,

2. [·, ·] is skew-symmetric: [x, x] = 0 for all x ∈ L,

3. The Jacobi identity holds: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

In order to get somewhat acquainted with the notion of a Lie algebra, we first give
two examples.

Example 2.2. The first example is R3 with [x, y] := x× y, the vector product, i.e. x1

x2

x3

×

 y1
y2
y3

 =

 x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

 . (2.1)

It is straightforward to verify that indeed [x, y] is bilinear and skew-symmetric.
Verification of the Jacobi identity is straightforward as well.

7

8 CHAPTER 2. LIE ALGEBRAS - AN INTRODUCTION

Example 2.3. A whole range of examples can be found as follows. Let V be a
vector space, and L the ring of all linear transformations V → V . Define [X,Y] =
XY − Y X for each X,Y ∈ L. Obviously, [·, ·] is bilinear, and [X,X] = 0. For the
Jacobi identity we have:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] =
[X,Y Z − ZY] + [Y, ZX −XZ] + [Z,XY − Y X] =
XY Z −XZY − Y ZX + ZY X + Y ZX − Y XZ+

−ZXY +XZY + ZXY − ZY X −XY Z + Y XZ = 0.

So indeed this gives us a Lie algebra, which we will call the general linear algebra
gl(V). It is clear that the above can be done for any associative algebra L.

Note that the first and second property in Definition 2.1 together imply [x, y] =
−[y, x] for all x, y ∈ L:

0 = [x+ y, x+ y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x]. (2.2)

We define two more notions on Lie algebras.

Definition 2.4. Let L1 and L2 be Lie algebras. A linear map ϕ : L1 → L2 is called a
Lie algebra homomorphism if ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L. If a Lie algebra
homomorphism ϕ is a bijection, then ϕ is called a Lie algebra isomorphism. A Lie
algebra homomorphism ϕ : L→ L is called a Lie algebra automorphism.

If L is a Lie algebra, then we define for any ϕ : L → gl(L) that [ϕ(x), ϕ(y)] =
ϕ(x)ϕ(y)− ϕ(y)ϕ(x), analogous to Example 2.3.

Definition 2.5. (Ad) Let L be a Lie algebra. For x ∈ L, we define a linear map adx :
L→ L by

adx(y) = [x, y]. (2.3)

Thus ad (i.e. the map x 7→ adx) is in fact a linear map from L into the space of linear
operators from L to L.

The ad function is useful in the sense that it makes things definitely more readable:
instead of writing [x, [x, [x, [x, [x, y]]]]]we will now simply write (adx)5(y). We have the
following useful property for the ad function:

Lemma 2.6. If L is a Lie algebra, then ad is a Lie algebra homomorphism from L to gl(L).

Proof Let L be a Lie algebra, and let x, y ∈ L. Then we have, for every z ∈ L, (by the
Jacobi identity):

ad[x,y](z) = [[x, y], z]
= −[z, [x, y]]
= [x, [y, z]] + [y, [z, x]]
= [x, [y, z]]− [y, [x, z]]
= adxady(z)− adyadx(z)
= (adxady − adyadx)(z)
= [adx, ady](z), (2.4)

so indeed ad[x,y] = [adx, ady], so ad is a homomorphism. �

Definition 2.7. (Derivation) A derivation d is a Lie algebra homomorphism satisfying

d([x, y]) = [d(x), y] + [x, d(y)].

If we pick an image of ad in gl(L), we see that it acts as a derivation on L:

2.2. REPRESENTATIONS 9

Lemma 2.8. If L is a Lie algebra and x ∈ L, then adx is a derivation, i.e. adx([y, z]) =
[y, adx(z)] + [adx(y), z].

Proof Let x ∈ L, and observe the action of adx on [y, z] for y, z ∈ L:

adx([y, z]) = [x, [y, z]]
= [y, [x, z]]− [z, [x, y]]
= [y, adx(z)]− [z, adx(y)]
= [y, adx(z)] + [adx(y), z]. (2.5)

�

Furthermore, we have the following notion:

Definition 2.9. (Monomial) A monomial of length s is a bracketing of the form

[x1, [x2, [x3, . . . [xs−1, xs] . . .]]].

If we consider a Lie algebra generated by elements G, we usually take monomials
to be those bracketings where x1, . . . , xs ∈ G. Furthermore, we then have the notion
of reducible monomial: A monomial is called reducible if it is a linear combination of
monomials of strictly smaller length.

2.2 Representations

Again, let L be a Lie algebra over the field F, and V a vector space over F.

Definition 2.10. (Representation) A representation of L in V is a map ϕ : L→ End(V)
such that

• ϕ is linear, and

• ϕ([x, y]) = ϕ(x)ϕ(y)− ϕ(y)ϕ(x) for all x, y ∈ L.

If V is finite dimensional, the above is equivalent to saying that ϕ is a homomor-
phism of L into gl(V). A well known representation is the adjoint representation of a
Lie algebra: ϕ : L→ gl(L), x 7→ adx.

There is a well-known result on representations of finite dimensional Lie algebras:

Theorem 2.11. (Ado’s Theorem) Every finite dimensional Lie algebra L of characteristic zero
has a faithful finite dimensional representation.

The proof of this theorem is beyond the scope of this document. It can be found in
[Jac62, Chapter VI].

2.3 Ideals

Note that we defined gl(V) as the set of linear transformations of a vector space V to
itself, viewed as a Lie algebra (see Example 2.3).

Definition 2.12. (Linear Lie Algebra) A Lie algebra L is called a linear Lie algebra if it is
isomorphic to a subalgebra of gl(V) for some vector space V .

Example 2.13. Since gl(V) is always finite dimensional, any infinite dimensional
Lie algebra is an example of a nonlinear Lie algebra. Take for example the Lie
algebra L = 〈a, b〉, where we may create strings of arbitrary length consisting of
a’s and b’s.

The notion of ideals in rings extends to ideals in Lie algebras:

10 CHAPTER 2. LIE ALGEBRAS - AN INTRODUCTION

Definition 2.14. (Ideal) A subspace I of a Lie algebra L is called an ideal if [x, y] ∈ I if
x ∈ L and y ∈ I .

Example 2.15. Let L be a Lie algebra. Obviously, {0} and L are ideals.

A more interesting example is the center of L:

Z(L) = {z ∈ L | [x, z] = 0 for all x ∈ L}. (2.6)

Indeed, if we let y ∈ L and z ∈ Z(L), then [y, z] = 0 ∈ Z(L).

Lemma 2.16. If I and J are both ideals of L, then I + J = {x + y | x ∈ I, y ∈ J} is an
ideal, and so is [I, J] = {Σ[xi, yi] | xi ∈ I, yi ∈ J}.

Proof Let I and J be ideals of a Lie algebra L. It is straightforward that I + J is an
ideal of L, so we focus on [I, J]. Let y ∈ L and z ∈ [I, J], so z = [a1, b1] + . . .+ [at, bt],
with ai ∈ I and bi ∈ J . Then, by bilinearity,

[y, z] = [y, [a1, b1]] + . . .+ [y, [at, bt]]. (2.7)

By Jacobi, we have for every term of this equation,

[y, [ai, bi]] = [ai, [y, bi]] + [bi, [ai, y]] = [ai, [y, bi]] + [[y, ai], b], (2.8)

and both of these terms are of the form [a, b] with a ∈ I and b ∈ J . So indeed [y, z] ∈
[I, J], as desired. �

A special case of the latter construction is [L,L], the derived algebra of L. We end
this section with one more definition.

Definition 2.17. (Abelian) A Lie algebra L is called Abelian if [L,L] = 0.

2.4 Simple Lie Algebras

A very important property of a Lie algebra is the following:

Definition 2.18. (Simple Lie Algebra) A Lie algebra L is said to be simple if [L,L] 6= 0
and L has no ideals except {0} and L itself.

Corollary 2.19. If we consider ad as a map from L into the space of linear operators on
L, we see that its kernel is equal to the center of L:

ker(ad) = {x ∈ L | adx(y) = 0 for all y ∈ L} = Z(L). (2.9)

So if L is a simple Lie algebra, ker(ad) = {0}, hence ad is an isomorphism of L to
gl(L), so any simple Lie algebra is a linear Lie algebra.

Example 2.20. Let V be a vector space over F of dimension n. Recall that the trace
of a matrixM is the sum of its diagonal elements, commonly denoted by tr(M),
and independent of the choice of basis. Then we let sl(V) (or sln(F) if V = Fn)
denote the set of endomorphisms of V having trace zero.

Since tr(x + y) = tr(x) + tr(y) and tr(xy) = tr(yx), we know that sl(V) is a
subalgebra of gl(V). It is called the special linear algebra. It is easy to see that the
dimension of sl(V) is n2 − 1.

2.5. SOLVABILITY AND NILPOTENCY 11

It can be proved that only a very limited number of classes of simple Lie algebras
exist. Over fields of characteristic 0 there exist four families called the classical Lie
algebras, and five exceptional simple Lie algebras. In this report we limit ourselves to
giving a list of these algebras. The accompanying proof, however, is certainly worth
reading: consult for instance Chapter III of [Hum72].

The four families of classical Lie algebras are:

• An (n ≥ 1): The Lie algebra of the special linear group in n + 1 variables, also
denoted sln+1, and most commonly represented by all (n + 1) × (n + 1) ma-
trices with trace 0 (see Example 2.20). It is easy to see that this Lie algebra has
dimension (n+ 1)2 − 1.

• Cn (n ≥ 3): The Lie algebra of the symplectic group in 2n variables, also denoted
sp2n. We let V be a vector space of dimension 2n, and denote its elements as row
vectors. We define the non-degenerate bilinear form g on V by the matrix G:

G =
(

0 In
−In 0

)
. (2.10)

It is easy to see that g is an skew-symmetric bilinear function into F. Now
sp2n consists by definition of all endomorphisms x of V satisfying g(x(v), w) =
−g(v, x(w)). It is not hard to see that the dimension of sp2n is n(2n+ 1).

• Bn (n ≥ 2): The Lie algebra of the special orthogonal group in 2n + 1 variables,
also denoted o2n+1. Similar to the previous case, we let V be a vector space of
dimension 2n + 1, and define the non-degenerate bilinear form g on V by the
matrix G:

G =

 1 0 0
0 0 In
0 In 0

 . (2.11)

Now o2n+1 consists by definition of all endomorphisms x of V satisfying g(x(v), w) =
−g(v, x(w)). Its dimension is n(2n+ 1).

• Dn (n ≥ 4): The Lie algebra of the special orthogonal group in 2n variables, also
denoted o2n. This Lie algebra is defined in the same way as o2n+1, only V has
dimension 2n again and G has the simpler form

G =
(

0 In
In 0

)
. (2.12)

The dimension of o2n is n(2n− 1).

Note that we could also define Bn and Cn for n ≥ 1 and Dn for n ≥ 3, but to avoid
repetitions (because A1 = B1 = C1, B2 = C2, and A3 = D3) we usually use the
numbering above.

The exceptional Lie algebras are denoted byG2 (of dimension 14), F4 (of dimension
52), E6 (of dimension 78), E7 (of dimension 133), and E8 (of dimension 248).

2.5 Solvability and Nilpotency

A given Lie algebra could be solvable or nilpotent:

Definition 2.21. (Solvability) Let L be a Lie algebra. We define a sequence of ideals of
L by

L(0) = L,L(1) = [L,L], L(2) = [L(1), L(1)] = [[L,L], [L,L]], L(3) = [L(2), L(2)],
(2.13)

L is called solvable if L(n) = 0 for some n.

12 CHAPTER 2. LIE ALGEBRAS - AN INTRODUCTION

So from the definitions we immediately see that Abelian Lie algebras are always
solvable, and simple Lie algebras are never solvable.

Definition 2.22. (Nilpotency) Let L be a Lie algebra. We define a sequence of ideals of
L by

L0 = L,L1 = [L,L], L2 = [L,L1] = [L, [L,L]], L3 = [L,L2], (2.14)

L is called nilpotent if Ln = 0 for some n.

Example 2.23. We let L be the Lie algebra over the field F generated by a, b, and
c, such that [a, b] = [a, c] = a and [b, c] = 0. It is easy to see that this Lie algebra
satisfies the Jacobi identity:

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0− [b, a] + [c, a] = −− a+−a = 0. (2.15)

Furthermore, [L,L] = Fa so [[L,L], [L,L]] = 0 and L is solvable. However, L is
not nilpotent: for example, [b, [b, [. . . , [b, a]]]] is nonzero for any arbitrary number
of b’s in front.

Similarly, an ideal I is called solvable if I(n) = 0 for some n, and it is called nilpotent
if In = 0 for some n. It is easy to see that every nilpotent Lie algebra (ideal) is solvable,
since [L,L] ⊆ L. A solvable Lie algebra (ideal), however, is not necessarily nilpotent.

Definition 2.24. (Radical) Let L be a Lie algebra. The radical of L, denoted by Rad(L),
is the largest solvable ideal of L.

Definition 2.25. (Nilradical) Similarly, we define the nilradical ofL, denoted byNilRad(L),
as the largest nilpotent ideal of L.

It is straightforward to see that a Lie algebra has a unique radical. Suppose I and J
are solvable ideals of a Lie algebra L. Then J/(I ∩J) is solvable (because J is solvable),
so (I + J)/I is solvable (because (I + J)/I ∼= J/(I ∩ J)), so I + J is solvable. So there
is a unique solvable ideal containing all solvable ideals of L, which is exactly the radical
of L. With a similar argument we see that the nilradical of a Lie algebra is unique.

Definition 2.26. (Semi-simple Lie Algebra) A Lie algebra L is said to be semi-simple if
Rad(L) = 0.

Theorem 2.27. Let L be a Lie algebra. Then L/Rad(L) is semi-simple.

Proof Letϕ be the natural map ofL ontoL/Rad(L). If I is a solvable ideal ofL/Rad(L),
then ϕ−1(I) must be a solvable ideal of L, and we have Rad(L) ⊆ ϕ−1(I). Moreover,
by maximality of Rad(L) we have ϕ−1(I) ⊆ Rad(L), hence Rad(L) = ϕ−1(I). This
shows that I = 0, hence L is semi-simple. �

We end this section with a very important theorem.

Theorem 2.28. L is semi-simple if and only if it is isomorphic to a direct sum of simple Lie
algebras.

The proof of this theorem is beyond the scope of this report. Consult for instance
Section 2 of [Hum72] or Chapter 6 of [Hal03]. It should be noted that in some books
semi-simplicity is defined as in Theorem 2.28, and then Definition 2.26 is proved as a
property.

2.6. UNIVERSAL ENVELOPING ALGEBRAS 13

2.6 Universal Enveloping Algebras

Now we arrive at the notion universal enveloping algebra.

Definition 2.29. (Universal Enveloping Algebra) Let L be a Lie algebra over the field
F. A pair (U, ϕ), where U is an associative algebra over F and ϕ is a linear mapping
of L into U, is called a universal enveloping algebra of L if the following conditions are
satisfied:

• ϕ(L) generates U,

• ϕ([x, y]) = ϕ(x)ϕ(y)− ϕ(y)ϕ(x) for all x, y ∈ L, and

• If U′ is any associative algebra and ϕ′ is any linear map of L into U′ such that
ϕ′([x, y]) = ϕ′(x)ϕ′(y)−ϕ′(y)ϕ′(x) for all x, y ∈ L, then there exists a (unique)
homomorphism θ of U into U′ such that ϕ′(x) = θ(ϕ(x)) for all x ∈ L.

One special universal enveloping algebra is the following. Let L be a Lie algebra
and let T be the tensor algebra over the underlying vector space of L. For x, y ∈ L we
let

ux,y = x⊗ y − y ⊗ x− [x, y]. (2.16)

By L we denote the two sided ideal
∑
x,y∈L T ⊗ux,y⊗T . We introduce the quotient

algebra U = T/L, and let ϕ be the natural homomorphism of T onto U . Since L
generates T , we have that ϕ(L) generates U . It is straightforward to verify that (U,ϕ)
is indeed a universal enveloping algebra of L. It is a bit more elaborate to prove that ϕ
is in fact injective, see [Hum72, Section 17.2].

Because ϕ is injective on L, it is possible to identify L with its image ϕ(L) in U .
With this identification, U will be called the universal enveloping algebra of L.

14 CHAPTER 2. LIE ALGEBRAS - AN INTRODUCTION

Chapter 3

Extremal Elements

3.1 Introduction

Definition 3.1. (Extremal Element) A nonzero element x of a Lie algebra L over F is
called an extremal element if [x, [x, L]] ⊆ Fx.

For extremal elements, ad has a very nice property: Let x ∈ L be an extremal
element, then, for any y ∈ L, ad3

x(y) = [x, [x, [x, y]]] = [x, αx] for a certain α ∈ F, so
ad3
x(y) = α[x, x] = 0. We say that x is ad-nilpotent of order at most 3.

In the remainder of this section we will study Lie algebras generated by extremal
elements, using [CSUW01]. We will assume that L is a Lie algebra over the field F of
characteristic not 2, and start with some general properties of extremal elements.

Since [x, [x, y]] is linear in y, we know that an element x ∈ L is extremal if and only
if a linear functional fx : L→ K, y 7→ fx(y) exists, such that

[x, [x, y]] = fx(y)x for all y ∈ L. (3.1)

Note that, (in characteristic not equal to 2) if x and y commute, we have [x, y] =
[y, x], and by Definition 2.1 we have [x, y] = −[y, x], so [x, y] = [y, x] = 0. This implies
fx(y) = 0.

Following [CSUW01], we will write E for the set of non-zero extremal elements in
L.

Lemma 3.2. If x, y ∈ E , then fx(y) = fy(x).

Proof Let x, y ∈ E . We will compute [y, [x, [x, y]]] in two different ways.
On the one hand,

[y, [x, [x, y]]] = [y, fx(y)x] = fx(y)[y, x], (3.2)

but on the other hand (by the Jacobi identity),

[y, [x, [x, y]]] = −[x, [[x, y]], y]− [[x, y], [y, x]]
= −[x, [y, [y, x]]]
= −[x, fy(x)y]
= fy(x)[y, x]. (3.3)

So, provided that x and y do not commute, we may conclude fx(y) = fy(x). If x
and y commute, we have fx(y) = 0 = fy(x), as noted above. �

15

16 CHAPTER 3. EXTREMAL ELEMENTS

We have some nice relations for calculations involving extremal elements. At least
the first two rules go back to Premet. In the remainder of this report we will refer to
them as (P1) to (P5).

Lemma 3.3. Let L be a Lie algebra over a field of characteristic not 2. Let x ∈ E and
y, z ∈ L. Then:

(P1) 2[[x, y], [x, z]] = fx([y, z])x+ fx(z)[x, y]− fx(y)[x, z],

(P2) 2[x, [y, [x, z]]] = fx([y, z])x− fx(z)[x, y]− fx(y)[x, z].

Now let x, y ∈ E and z ∈ L.

(P3) 2[[x, y], [x, [y, z]]] = fy(z)fx(y)x+ fx([y, z])[x, y]− fx(y)[x, [y, z]],

(P4) 2[[x, y], [[x, y], z]] = (fx([y, z])− fy([x, z]))[x, y]+
fx(y)(fx(z)y + fy(z)x− [y, [x, z]]− [x, [y, z]]).

Now let x, y, z ∈ E .

(P5) 2[[x, [y, z]], [y, [x, z]]] = − 1
2 (fy(z)fx([y, z])x+ fx([y, z])fx(z)y + fx([y, z])fx(y)z)

− fy(z)fx(z)[x, y] + fy(z)fx(y)[x, z]− fx(z)fx(y)[y, z].

Proof For sake of completeness we provide the straightforward proofs for these rela-
tions. Firstly, let x ∈ E and y, z ∈ L. Then, using the Jacobi identity, we find

[[x, y], [x, z]] = −[[x, z], [x, y]]
= [x, [y, [x, z]]] + [y, [[x, z], x]]
= [x, [y, [x, z]]] + fx(y)[x, y]. (3.4)

Similarly, interchanging y and z, we find

[[x, y], [x, z]] = −[x, [z, [x, y]]]− fx(y)[x, z]. (3.5)

Furthermore, again by the Jacobi identity,

[x, [z, [x, y]]] = −[x, [x, [y, z]]]− [x, [y, [z, x]]] = −fx([y, z])x+ [x, [y, [x, z]]], (3.6)

so
0 = [x, [z, [x, y]]] + fx([y, z])x− [x, [y, [x, z]]]. (3.7)

Adding Equations 3.4, 3.5, and 3.7 yields

2[[x, y], [x, z]] = fx([y, z])x+ fx(z)[x, y]− fx(y)[x, z], (3.8)

which proves the first identity.
Inserting the first identity into the result of Equation 3.6 yields:

2[x, [y, [x, z]]] = 2[[x, y], [x, z]]− 2fx(z)[x, y]
= fx([y, z])x− fx(z)[x, y]− fx(y)[x, z], (3.9)

which proves the second identity.

Now let x, y ∈ E and z ∈ L. Substituting [y, z] for z in the first identity gives

2[[x, y], [x, [y, z]]] = fx([y, [y, z]])x+ fx([y, z])[x, y]− fx(y)[x, [y, z]]
= fy(z)fx()x+ fx([y, z])][x, y]− fx(y)[x, [y, z]], (3.10)

which proves the third identity. For the last identity, we first apply the Jacobi identity,
and then apply the third identity twice (using that fx(y) = fy(x) when both x and y
are extremal elements):

2[[x, y], [[x, y], z]] = −2[[x, y], [z, [x, y]]]

3.1. INTRODUCTION 17

= 2[[x, y], [x, [y, z]]] + 2[[x, y], [y, [z, x]]]
= 2[[x, y], [x, [y, z]]] + 2[[y, x], [y, [x, z]]]
= fy(z)fx(y)x+ fx([y, z])[x, y]− fx(y)[x, [y, z]]

+fx(z)fy(x)y + fy([x, z])[y, x]− fy(x)[y, [x, z]]
= fx(y) (fy(z)x− [x, [y, z]] + fx(z)y − [y, [x, z]])

+ (fx([y, z])− fy([x, z])) [x, y]. (3.11)

For the last identity, we let x, y, z ∈ E , and apply Jacobi to see that

[[x, [y, z]], [y, [x, z]]] = −[[y, [x, z]], [x, [y, z]]]
= [x, [[y, z], [y, [x, z]]]]− [[y, z], [x, [y, [x, z]]]]. (3.12)

For the first term, we have

[x, [[y, z], [y, [x, z]]]] =
= [x, 1

2f(y, [z, [x, z]])y + 1
2f(y, [x, z])[y, z]− 1

2f(y, z)[y, [x, z]]]
= − 1

2f(y, z)f(x, z)[x, y]− 1
2f(x, [y, z])[x, [y, z]]− 1

2f(y, z)[x, [y, [x, z]]]
= − 1

2f(y, z)f(x, z)[x, y]− 1
2f(x, [y, z])[x, [y, z]]

− 1
4f(y, z)f(x, [y, z])x+ 1

4f(y, z)f(x, y)[x, z] + 1
4f(y, z)f(x, z)[x, y].

For the second term, we have

−[[y, z], [x, [y, [x, z]]]] =
= −[[y, z], 1

2f(x, [y, z])x− 1
2f(x, y)[x, z]− 1

2f(x, z)[x, y]]
= 1

2f(x, [y, z])[x, [y, z]]
− 1

4f(x, y)f(x, [y, z])z + 1
4f(x, y)f(y, z)[x, z]− 1

4f(x, y)f(x, z)[y, z]
− 1

4f(x, z)f(x, [y, z])y − 1
4f(x, y)f(x, z)[y, z]− 1

4f(x, z)f(y, z)[x, y].

Adding the two terms, we find

[[x, [y, z]], [y, [x, z]]] =
= − 1

4f(x, [y, z])f(y, z)x− 1
4f(x, [y, z])f(x, z)y + 1

4f(x, [y, z])f(x, y)z
− 1

2f(x, z)f(y, z)[x, y] + 1
2f(x, y)f(y, z)[x, z]− 1

2f(x, y)f(x, z)[y, z],

which is the statement to be proved.

This completes the proof of Lemma 3.3. �

Definition 3.4. (Exponential) We define, for x ∈ E and s ∈ F, the following function:

exp(x, s) := 1 + sadx +
1
2
s2ad2

x. (3.13)

Since ad3
x = 0 if x ∈ E , this is the exponential of the derivation sadx.

We verify that exp(x, s) is an automorphism ofL. Firstly, note that [ad2
x(y), ad2

x(z)] =
fx(y)fx(z)[x, x] = 0 and

[adx(y), ad2
x(z)] + [ad2

x(y), adx(z)] = [[x, y], [x, [x, z]]] + [[x, [x, y]], [x, z]]
= [[x, y], fx(z)x] + [fx(y)x, [x, z]]
= −fx(z)[x, [x, y]] + fx(y)[x, [x, z]]
= −fx(z)fx(y)x+ fx(y)fx(z)x
= 0. (3.14)

Now we have the following chain of identities:

[exp(x, s)(y), exp(x, s)(z)]

18 CHAPTER 3. EXTREMAL ELEMENTS

= [y + sadx(y) +
1
2
s2ad2

x(y), z + sadx(z) +
1
2
s2ad2

x(z)]

= [y, z] + [y, sadx(z)] + [y,
1
2
s2ad2

x(z)]

+[sadx(y), z] + [sadx(y), sadx(z)] + [sadx(y),
1
2
s2ad2

x(z)]

+[
1
2
s2ad2

x(z), z] + [
1
2
s2ad2

x(z), sadx(z)] + [
1
2
s2ad2

x(z),
1
2
s2ad2

x(z)]

= [y, z] + s[y, adx(z)] + s[adx(y), z]

+2 · 1
2
s2[adx(y), adx(z)] +

1
2
s2[y, ad2

x(z)] +
1
2
s2[ad2

x(y), z] + 0 + 0

= [y, z] + sadx([y, z]) +
1
2
s2ad2

x([y, z])

= exp(x, s)([y, z]). (3.15)

So indeed exp(x, s) is an automorphism of L.

3.2 Lie Algebras Generated by Extremal Elements

Lemma 3.5. If L is generated as a Lie algebra by extremal elements, then it is spanned by the
set E of all extremal elements.

Proof We consider z ∈ L as a bracketing of elements from E . We apply induction on
the length of z. If the length of z is 1 then z ∈ E and we are done.

Now suppose all monomials of length n are indeed linear combinations of elements
from E and z is a bracketing of length n+ 1. Then consider the last two elements of z,
more precisely: z = [·, [·, [· · · , [·, [x, y]] · · ·]]] with x, y ∈ E . Now letm = exp(x, 1)y =
y + [x, y] + 1

2f(x, y)x, and note that m is an extremal element since exp(x, 1) is an
automorphism. This means that

z = [·, [·, [· · · , [·,m− y − 1
2
f(x, y)x] · · ·]]]

= [·, [·, [· · · , [·,m] · · ·]]]− [·, [·, [· · · , [·, y] · · ·]]]
−1

2
f(x, y)[·, [·, [· · · , [·, x] · · ·]]], (3.16)

and we apply the induction hypothesis. This finishes the proof. �

We show how the map f defined in the beginning of this section (see Identity 3.1)
gives rise to a symmetric bilinear associative form:

Theorem 3.6. Suppose the Lie algebra L over the field F is generated by the set of nonzero
extremal elements E . Then a unique bilinear symmetric form f : L × L → K exists, such
that the linear form fx coincides with y 7→ f(x, y) for each x ∈ E . This form is associative
in the sense that f(x, [y, z]) = f([x, y], z) for all triples x, y, z ∈ L.

Proof By the previous lemma, we know a basis of L exists consisting of elements from
E , say u1, . . . , ut. Note that if x ∈ E and α ∈ F, then [αx, [αx, y]] = α2fx(y)x =
αf(x, y)αx, so αx is also extremal with f(αx, y) = αf(x, y).

Now suppose x =
∑
i λiui, and define fx by

∑
i λifui

, which is equal to
∑
i fλiui

.
Furthermore, suppose that both

∑
i ui and

∑
i vi are ways of writing an x ∈ L as a

sum of extremal elements. Now we let z ∈ E and see, by Lemma 3.2,

fx(z) =
∑
i

fui(z) =
∑
i

fz(ui) = fz(
∑
i

ui) = fz(
∑
i

vi) =
∑
i

fz(vi) =
∑
i

fvi(z),

(3.17)

3.3. THE RADICAL AND THE BILINEAR FORM F 19

so, since E spans L (Lemma 3.5), we know that
∑
i fui =

∑
i fvi . Hence, fx is a well

defined linear functional. It immediately follows that f(x, y) = fx(y) defines a bilinear
form, which is symmetric by Lemmas 3.2 and 3.5.

It remains to show that f is associative in the sense described above. Take x, y, z ∈
E . Interchanging x and y in (P4) gives

2[[x, y], [y, [x, z]]] = −f(x, z)f(x, y)y + f(y, [x, z])[x, y] + f(x, y)[y, [x, z]], (3.18)

and Jacobi followed by the application of (P1) gives

2[[x, y], [y, [x, z]]] = −2[y, [[x, z], [x, y]]]− 2[[x, z], [[x, y], y]]
= [y, f(x, [y, z])x+ f(x, z)[x, y]− f(x, y)[x, z]]

−2f(x, y)[[x, z], y]
= −f(x, [y, z])[x, y]− f(x, z)f(x, y)y

+f(x, y)[y, [x, z]]. (3.19)

We now distinguish two cases.

• If [x, y] 6= 0 we compare the coefficients of [x, y] in the two expressions above,
and see that −f(x, [y, z]) = f(y, [x, z]). From this it follows that

f(x, [z, y]) = −f(x, [y, z]) = f(y, [x, z]) = f([x, z], y), (3.20)

proving the statement if [x, y] 6= 0. By symmetry, we find f(x, [y, z]) = f([x, y], z)
if [x, z] 6= 0 and f(y, [x, z]) = f([y, x], z) if [y, z] 6= 0.

• If [x, y] = 0 and [x, z] 6= 0 and [y, z] 6= 0, we have f(x, [z, y]) = 0 = f([x, z], y)
by the previous calculations. By symmetry, we are left with the case [x, y] =
0, [x, z] = 0. By Jacobi, we have [x, [y, z]] = 0, and applying ad yields f(x, [y, z]) =
0 = f([x, z], y). So we proved the statement.

This implies that f(x, [z, y]) = f([x, z], y) for all x, y, z ∈ E . Since E spans L, this
completes the proof. �

One of the main results on Lie algebras generated by finitely many extremal ele-
ments is the following theorem.

Theorem 3.7. If L is generated as a Lie algebra by a finite number of extremal elements,
then L is finite dimensional.

This theorem is due to Zelmanov and Kostrikin [ZK90]. The proof by Zelmanov
and Kostrikin requires the introduction of many notions, so we refrain from giving that
here. Another, somewhat shorter, version of the proof can be found in [CSUW01].

3.3 The Radical and the Bilinear Form f

This section is a summary of the observations leading to one of the results of [CSUW01,
Section 9]. Throughout this section, L is a Lie algebra over the field F generated by
extremal elements, and E is the set of extremal elements of L.

We define the radical of the bilinear form f (as introduced in Theorem 3.6) as
follows:

Definition 3.8. (Radical of f)

Rad(f) = {x ∈ L | f(x, y) = 0 for all y ∈ L}. (3.21)

20 CHAPTER 3. EXTREMAL ELEMENTS

The remainder of this section is devoted to the proof of the following theorem.

Theorem 3.9. If the characteristic of the underlying field is not 2 or 3, then Rad(f) =
Rad(L).

Before proceeding to the proof of this theorem, we prove a few lemmas.

Lemma 3.10. Let J be an ideal of L, and let N := spanF{x ∈ E | x 6∈ J}. Then
f(N, J) = 0.

Proof Let x ∈ E\J and y ∈ J . Then f(x, y)x = [x, [x, y]] ∈ J , so f(x, y) = 0. �

Lemma 3.11. LetK be a solvable ideal of L. Then E ∩K ⊆ Rad(f).

Proof Let x ∈ E ∩K, and let y ∈ E . If y 6∈ K, then f(x, y) = 0 by the previous lemma.
If, on the other hand, y ∈ K and f(x, y) 6= 0, then 〈x, y〉 ≡ sl2, contradicting that K
is solvable. This implies that f(x, y) = 0 for all x ∈ E ∩K and y ∈ E , completing the
proof as E spans L (Lemma 3.5). �

Lemma 3.12. We have Rad(L) ⊆ Rad(f).

Proof Let K be a solvable ideal of L and let x ∈ K and y ∈ E . If y ∈ K we have
f(x, y) = 0 by Lemma 3.11. If y 6∈ K, we have f(x, y) = 0 by Lemma 3.10. �

We denote by SanRad(L) the linear span of all sandwiches of E :

SanRad(L) := {x ∈ E | ad2
x = 0}. (3.22)

It is easy to see that SanRad(L) is an ideal of L. Moreover, as the restriction of f to
SanRad(L) is identically zero, we know that SanRad(L) is a nilpotent Lie subalgebra
of L, so SanRad(L) ⊆ NilRad(L) (cf [ZK90] and Lemma 4.2 of [CSUW01]).

These observations lead to the following chain of inclusions:

SanRad(L) ⊆ NilRad(L) ⊆ Rad(L) ⊆ Rad(f). (3.23)

Lemma 3.13. If x ∈ E\Rad(f) and y ∈ Rad(f), then ad4
[x,y] = 0, provided that

char(F) 6= 2.

Proof Write X = adx and Y = ady . Then we have for z ∈ L, by (P2),

2XYXY z = 2[x, [y, [x, [y, z]]]]
= f(x, [y, [y, z]])x− f(x, y)[x, [y, z]]− f(x, [y, z])[x, y]
= f(y, z)f(x, y)x− f(y, x)[x, [y, z]] + f(y, [x, z])[x, y]
= 0, (3.24)

so 2XYXY = 0, andXYXY = 0 by the assumption that the characteristic of the field
is not 2. Moreover,

X2Y z = [x, [x, [y, z]]] = f(x, [y, z])x = −f(y, [x, z])x = 0, (3.25)

so X2Y = 0. Using these equations, we have for ad4
[x,y]:

ad4
[x,y] = (XY − Y X)4

= (XYXY −XY 2X − Y X2Y + Y XY X)2

= (Y XY X −XY 2X)
= Y XY XYXYX − Y XY XXY 2X −XY 2XYXYX +XY 2XXY 2X
= Y (XYXY)XYX − Y XY (X2Y)Y X −XY 2(XYXY)X +XY 2(X2Y)Y X
= 0. (3.26)

�

3.3. THE RADICAL AND THE BILINEAR FORM F 21

Lemma 3.14. LetK be an ideal of L, such that K ⊆ Rad(f). Then L := L/K is spanned
by extremal elements, with induced form f defined by f(x, y) := f(x, y) for x, y ∈ L.

Proof Since K ∈ Rad(f), the expression f(x, y) is well-defined for x, y ∈ L. Further-
more, for x ∈ E and y ∈ L, we have [x, [x, y]] = f(x, y) · x = f(x, y) · x, so indeed
x ∈ E(L). �

The proof of the theorem is due to Gabor Ivanyos.

Proof of Theorem 3.9 Recall that Lemma 3.12 states that Rad(L) ⊆ Rad(f), so if
Rad(f) ⊆ Z(L), there is nothing to prove. Suppose therefore that Rad(f) 6⊆ Z(L).
We will first show that SanRad(L) 6= 0.

By Lemma 3.13, there exists a nonzero w ∈ Rad(f) with ad4
w = 0. Indeed, if

E ∩ Rad(f) 6= ∅, any w ∈ E ∩ Rad(f) is good enough. Otherwise, if E ∩ Rad(f) = ∅,
take y ∈ Rad(f) and x ∈ E such that [x, y] 6= 0 (which is possible by the fact that L
is spanned by E and Rad(f) 6⊆ Z(L)), and use Lemma 3.13 to see that ad4

w = 0 if we
take w = [x, y]. Now, if char(F) is not 2 or 3, we have ad3

w(x) = 0 for any x ∈ L,
by Proposition 2.1.5 of [Kos90]. Summing up, we have that there exists a nonzero
w ∈ Rad(f) with ad3

w = 0.
If ad2

w = 0, we are done. Otherwise, there exists a b ∈ E with x = ad2
w(b) 6= 0. If

b ∈ Rad(f) then b ∈ Rad(f) ∩ E , so [b, [b, c]] = 0 for all c ∈ L, so b ∈ SanRad(L) and
we are done. So we assume that b 6∈ Rad(f). Then, for t ∈ L,

[x, [x, t]] = f(x, t)x
= f([w, [w, b]], t)x
= f([[b, w], w], t)x
= f(b, [w, [w, t]])[w, [w, b]]
= [w, [w, [b, [b, [w, [w, t]]]]]] (3.27)

so ad2
x = ad2

wad2
bad2

w (cf Lemma 1.7(iii) of [Ben77]). Since w ∈ Rad(f), we have
ad2
w(L) ⊆ Rad(f). Since b ∈ E\Rad(f), we have ad2

b(Rad(f)) = 0. This implies that
ad2
x = 0, so x ∈ SanRad(L). Summing up, we have that SanRad(L) 6= 0.

The reasoning above shows that if Rad(f) 6⊆ Z(L), then SanRad(L) 6= 0, hence
NilRad(L) 6= 0. But then, using Lemma 3.14 and by induction on the dimension,
Rad(f) must be solvable. This completes the proof of Theorem 3.9. �

Remark 3.15. One of the consequences of this theorem is the following. Suppose we
have a basis B (of dimension n) for a Lie algebra L over the field F generated by ex-
tremal elements, and we calculated (for a given bilinear form f) the n × n matrix M
defined by

Mi,j = f(Bi, Bj).

We may then view M as a linear map from Fn to Fn, and calculate its null space
N . There is an obvious one-to-one correspondence between N and Rad(f). Indeed,
suppose that α1e1 + . . .+ αnen ∈ N . This implies (by definition) that

α1f(B1, Bl) + . . .+ αnf(Bn, Bl) = 0, for l = 1, . . . , n,

so α1f(B1, x)+. . .+αnf(Bn, x) = 0 for all x ∈ L (sinceB spans L), and by bilinearity
we have

f(α1B1 + . . .+ αnBn, x) = 0,

so α1B1 + . . .+ αnBn ∈ Rad(f). The proof in the other direction is similar.
We will use this observation to analyse the structure of various degenerate cases,

for example in Section 6.5.

22 CHAPTER 3. EXTREMAL ELEMENTS

3.4 Generating Semi-Simple Lie Algebras

In this section we assume that we are working over the field F of characteristic not 2 or
3.

Theorem 3.16. Suppose the semi-simple Lie algebra L1 is generated (as a Lie algebra) by n
extremal elements and no fewer, and the semi-simple Lie algebra L2 is generated (as a Lie
algebra) bym extremal elements and no fewer. Then the semi-simple Lie algebra L1 + L2 is
generated by n+m extremal elements and no fewer.

Before giving the proof of this theorem, we prove a small lemma.

Lemma 3.17. Suppose x ∈ L1 is an extremal element in L1. Then x is an extremal element
in L1 + L2. Moreover, the bilinear form f on L1 coincides with f on L1 + L2.

Proof Let l ∈ L1 + L2, and let l1 ∈ L1 and l2 ∈ L2 be such that l = l1 + l2. Then
[x, [x, l1]] = f(x, l1)x and f(x, l2) = 0 since [x, [x, l2]] = 0. We have

[x, [x, l]] = f(x, l1)x+ 0x = (f(x, l1) + f(x, l2))x = f(x, l1 + l2)x = f(x, l)x,

so x is indeed an extremal element of L1 + L2. It also follows that fx on L1 + L2

coincides with fx on L1. Since L1 is spanned by extremal elements, the bilinear form
f on L1 + L2 coincides with f on L1 as well. �

From this argument it is clear that extremal elements of L2 are extremal elements
of L1 + L2 as well.

Proof of Theorem 3.16 Suppose thatL1 is generated by the extremal elements x1, . . . , xn
and L2 is generated by the extremal elements y1, . . . , ym. We let L = L1 + L2. It is
clear that L1 + L2 is generated by x1, . . . , xn, y1, . . . , ym, and that these elements are
all extremal. Indeed, for example, [xi, [xi, l]] = [xi, [xi, αxs + βyt]] = αf(xi, xs)xi, for
some α, β ∈ F.

So it remains to prove that L cannot be generated by less than n + m extremal
elements. Suppose to the contrary that L1+L2 is generated by less than n+m extremal
elements. Recall that there exists a set B of extremal elements spanning L1 + L2. If it
were the case that for all b ∈ B either b ∈ L1 or b ∈ L2, then B = B1 ∪ B2, such that
B1 ⊆ L1, B2 ⊆ L2, B1 ∩ B2 = ∅, and [B1, B2] = 0. Moreover, B1 spans L1 and B2

spans L2. Now we need n extremal elements to generate L1, and since these extremal
elements are all in B1 and [B1, L2] = 0, we need m additional extremal elements to
generate L2. This contradicts the assumption.

So from now on we assume that there exists a z ∈ B, such that z = x + y, x ∈ L1

and y ∈ L2, and x, y 6= 0. Suppose L1 is spanned by extremal elements x1, . . . , xN ,
and L2 is spanned by extremal elements y1, . . . , yM . Then z = α1x1 + . . .+ αNxN +
β1y1 + . . .+βMyM . We let t ∈ L1. Using the the fact that z is extremal and the lemma
above, we find

f(z, t)z = [z, [z, t]]

=
N∑
i=1

αi[z, [xi, t]] +
M∑
i=1

βi[z, [yi, t]]

=
N∑
i=1

αi[z, [xi, t]] + 0

=
N∑
i=1

N∑
j=1

αiαj [xj , [xi, t]] +
N∑
i=1

M∑
j=1

αiβj [yj , [xi, t]]

3.4. GENERATING SEMI-SIMPLE LIE ALGEBRAS 23

= [x, [x, t]] +
N∑
i=1

M∑
j=1

αiβj(−[xi, [t, yj]]− [t, [yj , xi]])

= f(x, t)x+ 0. (3.28)

The fact that [y, t] = 0 leads to the observation that f(y, t) = 0 (since f(y, t)y =
[y, [y, t]] = 0), so

f(z, t)(x+ y) = f(z, t)z = f(x, t)x+ f(y, t)x = f(z, t)x,

and since y 6= 0 we have f(z, t) = 0. Similarly, we find f(z, L2) = 0. This im-
plies that f(z, L) = 0, so z ∈ Rad(f), and by Theorem 3.9 then z ∈ Rad(L), so
dim(Rad(L)) ≥ 1. This shows that L is not semi-simple, so it cannot be isomorphic to
L1 + L2. This contradicts the assumption that L can be generated by less than n +m
extremal elements, so we proved the theorem. �

Repeatedly applying this theorem shows that the statement is true for the direct
sum of finitely many simple Lie algebras.

24 CHAPTER 3. EXTREMAL ELEMENTS

Chapter 4

Lie Algebras Generated by Two
Extremal Elements

In this chapter we study Lie algebras generated by two extremal elements, x and y. In
the first section it is shown that such a Lie algebra is in general isomorphic to A1. In
the second section we take a different point of view, and come to the same conclusions.
The first section is taken from [CSUW01].

4.1 Structure

Theorem 4.1. Let L be a Lie algebra over the field F generated by two extremal elements
x, y ∈ E . Then exactly one of the following three assertions holds:

1. L = Fx+ Fy is Abelian, E = L\{0}.

2. L = Fx+ Fy + Fz, where z = [x, y] 6= 0, and E = L\{0}.

3. L ∼= sl2 and E consists of all nilpotent elements of L.

Proof We define z = [x, y] and distinguish three cases:

• If [x, y] = 0:
Lemma 3.5 implies that L is spanned by x and y, i.e. L = Fx + Fy. Since
[x, y] = 0 = [y, x], we have that x and y commute, hence L is Abelian. From this
it immediately follows that [v, [v, u]] = 0 = 0 · v for each v ∈ L\{0}, so indeed
E = L\{0}. Furthermore, f is identically 0.

• If [x, y] 6= 0 and f is identically zero:
We note that z is an extremal element by (P4). Hence, by Lemma 3.5 we have
L = Fx + Fy + Fz. Similar reasoning as above leads to E = L\{0}. This Lie
algebra is referred to as the Heisenberg-algebra, denoted by h.

• If [x, y] 6= 0 and f is not identically zero:
Then L is isomorphic with sl2. We identify

x with

(
0 0
1 0

)
, y with

(
0 1
0 0

)
, (4.1)

and see that [x, y] := xy − yx is equal to:(
−1 0
0 1

)
. (4.2)

25

26 CHAPTER 4. LIE ALGEBRAS GENERATED BY TWO EXTREMAL ELEMENTS

Furthermore, we prove that E consists of all nilpotent elements of sl2.

– On the one hand, let u ∈ sl(2), u 6= 0, say u =
(
a b
c −a

)
. If u is

nilpotent, we have det(u) = 0, hence a2 + bc = 0.
Now we distinguish two cases. Firstly, if a = 0, then b = 0 or c = 0,
yielding either u ∈ Fy or u ∈ Fx, so u ∈ E . Secondly, if a 6= 0, then
u = a[x, y] + δx + εy with ε such that δε = a2. In that case, too, u ∈ E ,
because u is a linear combination of extremal elements.

– On the other hand, suppose u is an extremal element, write u =
(
a b
c −a

)
.

Then [u, [u, [x, y]]] =
(
−4bc 4ab
4ac 4bc

)
= αu for a certain α ∈ F. This yields

−4bc = aα, 4ab = αb, and 4ac = αc, so α = 4a and a2 + bc = 0. (Note that
we use the fact that the characteristic of the field is zero here). By the above
a2 + bc = 0 implies that u is nilpotent.

�

4.2 Classification by Structure Constants

Once we fix the basis of L to be x, y, and [x, y], the structure of the resulting Lie algebra
is completely determined by the functions f(x, y) and f(y, x). As noted before, we
have f(x, y) = f(y, x), so for every value we pick for f(x, y) we might have a Lie
algebra. This means we can consider the ‘line’ F as a line of Lie algebras, and wonder
what Lie algebra corresponds to each point on the line. To help us study the structure,
we write down the multiplication table of the basis elements of L in Table B.2.

At the origin (i.e. f(x, y) = 0), we have the case where L = Fx + Fy + Fz (see
Table B.3). On every other point we have sl2, as noted before. Note that we explicitly
demanded that the dimension of the resulting Lie algebra is 3, so here we do not see
the case where [x, y] = 0.

Chapter 5

Lie Algebras Generated by Three
Extremal Elements

In this chapter we study Lie algebras over the field F generated by three extremal ele-
ments x, y, and z. In the first section we show that the dimension of such a Lie algebra
is 8, and in the second section we show that it is in general isomorphic to A2. In the
third section we study the Lie algebra using structure constants. The first two sections
are largely inspired by [CSUW01, Section 5].

5.1 Dimension

In this section we study the Lie Algebra L generated by three extremal elements, x, y,
and z. The five identities in Lemma 3.3 immediately show that

x, y, z, [x, y], [y, z], [x, z], [x, [y, z]], [y, [x, z]] (5.1)

span L. This implies that L is at most 8-dimensional. It is easily checked that the above
8 elements give a basis in the free case, so dimL = 8.

5.2 Structure

We study the actions of adx and ady on the linear generators of L, and see that they can
be completely described by identities in terms of the four parameters f(x, y), f(x, z),
f(y, z), and f(x, [y, z]). We describe these parameters by drawing a triangle with ver-
tices x, y, and z, and labeling the edge xy with ‘edge’ parameter f(x, y), etc, and putting
the ‘central’ parameter f(x, [y, z]) in the middle, with an indication of orientation. See
Figure 5.1.

We will reduce f(x, [y, z]) to zero by transforming the generators, as follows. Let
s ∈ F, and consider the triple x, y, exp(x, s)z. It has the following parameters:

f(x, y) = f(x, y)
f(x, exp(x, s)z) = f(x, z)

f(y, exp(x, s)z) = f(y, z) + sf(x, [y, z]) +
1
2
s2f(x, y), f(x, z)

f(x, [y, exp(x, s)z]) = f(x, [y, z])− sf(x, y)f(x, z). (5.2)

Proof For the second parameter, we have

f(x, exp(x, s)z) = f(x, z) + sf(x, [x, z]) +
1
2
s2f(x, [x, [x, z]]) = f(x, z), (5.3)

27

28 CHAPTER 5. LIE ALGEBRAS GENERATED BY THREE EXTREMAL ELEMENTS

Figure 5.1: The three generator case

and for the third parameter, we have:

f(y, exp(x, s)z) = f(y, z) + sf(y, [x, z]) +
1
2
s2f(y, [x, [x, z]])

= f(y, z) + sf(x, [y, z]) +
1
2
s2f(y, f(x, z)x) (5.4)

For the last parameter, we have

f(x, [y, exp(x, s)z]) = f(x, [y, z]) + sf(x, [y, [x, z]]) +
1
2
s2f(x, [y, [x, [x, z]]]) (5.5)

The last term is obviously zero, and for the second term, we have

f(x, [y, [x, z]]) = −f(y, [x, [x, z]]) = −f(x, z)f(y, x) = −f(x, y)f(x, z).

So indeed f(x, [y, exp(x, s)z]) = f(x, [y, z])− sf(x, y)f(x, z). �

Clearly, this triple again consists of extremal elements, and generates the same
algebra as x, y, and z. We distinguish two cases:

• If at least two of the three edges have nonzero labels (say f(x, z) and f(x, y)), we
can transform the central parameter f(x, [y, z]) to zero by a suitable choice of s,
in this case s = f(x,[y,z])

f(x,y)f(x,z) .

• If at most one edge has a nonzero label, say f(x, y), and the central parameter
f(x, [y, z]) is also nonzero, we can move to three extremal generators x, y, and
exp(x, s)z with one more edge (i.e. f(y, exp(x, s)z)). So, we can reduce to the
first case, and thus we are always able to reduce to the case where the central
parameter is zero.

Now we let α, β, γ ∈ F\{0}, and scale x, y, z to αx, βy, γz. This leaves the central
parameter 0, and changes the edge labels to αβf(x, y), αγf(x, z), and βγf(y, z). This
means that, maybe using a field extension of F, we may transform all the edge labels
to −2.

By the above reasoning we are left with only four essentially different cases, distin-
guished by the number of edges labeled nonzero in the triangle:

Theorem 5.1. Suppose the Lie algebra L is generated by three extremal elements. After ex-
tending the field if necessary, L is generated by three extremal elements whose central parame-
ter is zero, and whose nonzero edge parameters are −2. In particular, L is a quotient of a Lie
algebraM generated by extremal elements x, y, z with f(x, [y, z]) = 0, and dimM = 8.

We distinguish four cases, depending on the number of nonzero edge parameters.

5.3. CLASSIFICATION BY STRUCTURE CONSTANTS 29

The four cases are as follows.

• f(x, y) = f(x, z) = f(y, z) = 0:
If f = 0, then Rad(M) = M by Theorem 3.9, soM is solvable.

• f(x, y) = −2, f(x, z) = f(y, z) = 0:
In this case, we have a five dimensional solvable radical R, spanned by
{z, [x, z], [y, z], [x, [y, z]], [y, [x, z]]}, and the semi-simple partM/R ofM is three
dimensional and isomorphic to sl2.

• f(x, y) = f(x, z) = −2, f(y, z) = 0:
In this case, we again have a five dimensional solvable radical R, spannend by
{y− 1

2 [y, [x, z]], z− 1
2 [y, [x, z]], [x, y]−[x, z], [y, z], [x, [y, z]]}, and the semi-simple

part ofM is again isomorphic to sl2.

• f(x, y) = f(x, z) = f(y, z) = −2:
In this case,M ∼= sl3. Take for example

x =

 0 1 0
0 0 0
0 0 0

 , y =

 0 0 0
1 0 0
0 0 0

 , and z =

 1 1 1
1 1 1
−2 −2 −2

 . (5.6)

5.3 Classification by Structure Constants

In this section we follow Section 4.2, and analyse the structure of the three generator
case using the evaluation of the function f defined in Theorem 3.6. First, we see that
by f(x, [y, z]) = f([x, y], z), f(x, [y, z]) = −f(x, [z, y]), and the symmetry of f , we
only ‘need’ f(x, y), f(x, z), f(y, z), and f(x, [y, z]). In Table B.4 the upper triangular
part can be found (for ease of reading), the lower triangular part follows by the fact that
the multiplication table of any Lie algebra is anti-symmetric.

Whereas the multiplication table of the two generator case only had 9 entries, this
one already contains 64 entries, and thus is a bit to large to study by hand. Fortunately,
we can use GAP [S+95] to help us. To this end, we enter the structure constants of the
multiplication into GAP. For example,

[[x, y], [x, z]] =
1
2
f(x, [y, z])x+

1
2
f(x, z)[x, y]− 1

2
f(x, y)[x, z]

gives the multiplication of the fourth and the fifth basis element, expressed in the other
basis elements, which yields the GAP command

SetEntrySCTable(T, 4, 5, [(1/2)*fxyz, 1, (1/2)*fxz, 4, -(1/2)*fxy, 5]);

Note that we have to define fxy,fxz,fyz, and fxyz in advance.
We do so for all possible multiplications, see Section C.1. This gives us the possi-

bility to easily analyse the Lie algebra. We write fxy for f(x, y), fxz for f(x, z), fyz for
f(y, z), and fxyz for f(x, [y, z]). Some observations:

• Setting fxy, fxz, fyz , and fxyz nonzero (and distinct) indeed gives us A2,

• Setting fxy, fxz, fyz nonzero, and fxyz to zero gives A2 as well,

• Setting fxy = fxz = fyz (nonzero) and fxyz to zero gives A2 as well,

• Setting fxy = fxz = fyz = 0 and fxyz nonzero gives A2 as well,

• Setting zero, one or two of fxy, fxz, nonzero and the others to zero gives a non
semi-simple Lie algebra, as indicated in Section 5.2. Its semi-simple part is iso-
morphic to A1 (i.e. sl2).

This seems to be in line with the results of Section 5.2.

30 CHAPTER 5. LIE ALGEBRAS GENERATED BY THREE EXTREMAL ELEMENTS

Chapter 6

Lie Algebras Generated by Four
Extremal Elements

In this chapter we consider Lie algebras generated by four extremal elements. The first
section, inspired by [CSUW01, Section 6], shows why such a Lie algebra is 28 dimen-
sional. In Section 6.3 it is shown that only 12 degrees of freedom exist determining ex-
actly which Lie algebra four given extremal elements generate. In the third section, we
use this result to analyse 212 = 4096 different Lie algebras generated by four extremal
elements. In Section 6.4 we present an algorithm that enables us to analyse various
instances of Lie algebras generated by (arbitrary many) extremal elements. This algo-
rithm is somewhat faster than what we used before, and it is needed for our analyses
in Chapter 8. Lastly, in Section 6.5, we consider some degenerate cases.

6.1 Dimension

In this section we study Section 6 of [CSUW01], which shows why a Lie algebra gener-
ated by four extremal elements has dimension 28.

Theorem 6.1. Let L be generated by four extremal elements x, y, z, and u. Then L is
spanned by the following 28 monomials of length at most 5:

x, y, z, u,
[x, y], [x, z], [x, u], [y, z], [y, u], [z, u],

[x, [y, z]], [x, [y, u]], [x, [z, u]], [y, [x, z]], [y, [x, u]], [y, [z, u]], [z, [x, u]], [z, [y, u]],
[x, [y, [z, u]]], [x, [z, [y, u]]], [y, [x, [z, u]]], [y, [z, [x, u]]], [z, [x, [y, u]]], [z, [y, [x, u]]],

[x, [y, [z, [x, u]]]], [y, [x, [z, [y, u]]]], [z, [x, [y, [z, u]]]], [u, [x, [y, [z, u]]]].
(6.1)

Proof Since L is spanned by the monomials in x, y, z, and u, we only have to show that
each monomial can be written as a linear combination of the 28 elements above. We
distinguish on the length of the monomials.

All the monomials of length 1 are on the list. From the 4 · 3 = 12 monomials of
length 2 we only need half, by skew-symmetry. These 6 monomials are on the list.

All monomials of length 3 involving at most 2 letters are reducible, since x, y, z,
and u are all extremal, so we study only those monomials of length 3 with 3 different
letters. We have

(
3
2

)
such monomials starting with x, and

(
3
2

)
such monomials starting

with y. By Jacobi, we only need those monomials starting with z that contain u and
either x or y (but not both), i.e. 2 more monomials. All monomials containing u have
now been considered, by the Jacobi identity. This yields the 8 monomials of length 3
above.

31

32 CHAPTER 6. LIE ALGEBRAS GENERATED BY FOUR EXTREMAL ELEMENTS

All monomials of length 4 involving at most 3 letters are reducible, by the extremal-
ity of x, y, z, and u, and (P2). So we study only those monomials of length 4 with 4
different letters. By the Jacobi identity we find that all monomials starting with x, y, or
z can be written as a linear combination of the six monomials of length 4 on the list:

[x, [y, [z, u]]]− [x, [z, [y, u]]] + [x, [u, [y, z]]] = 0, (6.2)

[y, [x, [z, u]]]− [y, [z, [x, u]]] + [y, [u, [x, z]]] = 0, (6.3)

[z, [x, [y, u]]]− [z, [y, [x, u]]] + [z, [u, [x, y]]] = 0, (6.4)

For the monomials starting with u, we find:

[u, [x, [y, z]]]− [x, [u, [y, z]]] + [[y, z], [u, x]] = 0, (6.5)

[u, [y, [x, z]]]− [y, [u, [x, z]]] + [[x, z], [u, y]] = 0, (6.6)

[u, [z, [x, y]]]− [z, [u, [x, y]]] + [[x, y], [u, z]] = 0, (6.7)

where the elements of the form [[a, b], [c, d]] can be expressed as follows:

[y, [z, [x, u]]]− [z, [y, [x, u]]] + [[x, u], [y, z]] = 0, (6.8)

[x, [z, [y, u]]]− [z, [x, [y, u]]] + [[y, u], [x, z]] = 0, (6.9)

[x, [y, [z, u]]]− [y, [x, [z, u]]] + [[z, u], [x, y]] = 0. (6.10)

So indeed all monomials of length 4 may be written as a linear combination of the
elements above.

For the monomials of length 5 we multiply a monomial [a, [b, [c, d]]] of length 4 to
the left with a letter. This yields four possibilities:

• [a, [a, [b, [c, d]]]], which is obviously reducible,

• [b, [a, [b, [c, d]]]], which is reducible by Identity (P2),

• [c, [a, [b, [c, d]]]], which cannot be obviously reduced, and

• [d, [a, [b, [c, d]]]], which can be rewritten to the case above by interchanging c and
d.

So we are left with themonomials of the form [c, [a, [b, [c, d]]]], where [a, [b, [c, d]]] is one
of the above monomials of length 4. This yields the following 12 monomials, which we
will callm11, . . . ,m16,m21, . . . ,m26:

[z, [x, [y, [z,u]]]], [y, [x, [z, [y,u]]]], [z, [y, [x, [z, u]]]], [x, [y, [z, [x,u]]]],
[y, [z, [x, [y, u]]]], [x, [z, [y, [x, u]]]],

[u, [x, [y, [z,u]]]], [u, [x, [z, [y, u]]]], [u, [y, [x, [z, u]]]], [u, [y, [z, [x, u]]]],
[u, [z, [x, [y, u]]]], [u, [z, [y, [x, u]]]].

(6.11)
We will prove that only m11, m12, m14, and m21 (boldfaced in Equation 6.11) are
needed. Indeed, the other 8 elements can be expressed in these four:

• m13 andm23 using 6.10 and 6.7,

• m15 andm25 using 6.9 and 6.6,

• m16 andm26 using 6.8 and 6.5,

• m22 using 6.2, and

• m24 using 6.3.

6.2. CLASSIFICATION BY STRUCTURE CONSTANTS 33

It remains to prove that all monomials of length 6 are reducible. For this, we con-
sider all the monomials above of length 5, and multiply them with a letter from the left.
This yields four different cases:

• [a, [c, [a, [b, [c, d]]]]]: Obviously reducible by (P2).

• [b, [c, [a, [b, [c, d]]]]]: The term [a, [b, [c, d]]] reduces, by the Jacobi identity, to [b, [[c, d], a]]
and [[c, d], [a, b]]. The latter passes to [d, [c, [a, b]]] and [c, [[a, b], d]], by the Jacobi
identity. The resulting elements are all reducible by (P2).

• [c, [c, [a, [b, [c, d]]]]]: Obviously reducible.

• [d, [c, [a, [b, [c, d]]]]]: The term [b, [c, d]] reduces, by the Jacobi identity, to [c, [d, b]]
and [d, [c, b]]. The former can be reduced by (P2), the latter has the form [d, [c, [a, [d, [c, b]]]]],
which reduces as follows:

[d, [c, [a, [d, [c, b]]]]] = −[d, [c, [a, [c, [d, b]]]]]− [d, [c, [a, [d, [b, c]]]]]
= [d, [c, [a, [c, [b, d]]]]]− [d, [c, [d, [a, [b, c]]]]] + [d, [c, [[b, c], [a, d]]]]
= [d, [c, [a, [c, [b, d]]]]]− [d, [c, [d, [a, [b, c]]]]]− [d, [c, [[a, d], [b, c]]]]
= [d, [c, [a, [c, [b, d]]]]]− [d, [c, [d, [a, [b, c]]]]] + [d, [c, [b, [c, [a, d]]]]]

−[d, [c, [c, [b, [a, d]]]]]. (6.12)

The last term reduces to a smaller case by extremality of c, and to the first three
terms we apply (P2).

So indeed all monomials of length 6 are reducible to smaller cases.
This completes the proof of Theorem 6.1. �

6.2 Classification by Structure Constants

We consider a Lie algebra L generated by four extremal elements x, y, z, and u. As
proved in the previous section, L is spanned by the 28 monomials in Equation 6.1. As
in Section 5.3, we will analyse the structure of L using GAP. To this end, we need to
know which evaluations of f control the structure of the resulting Lie algebra.

Theorem 6.2. Let a, b ∈ L. Then f(a, b) can be linearly expressed in terms of the following
12 monomials:

f(x, y), f(x, z), f(x, u), f(y, z), f(y, u), f(z, u)
f(x, [y, z]), f(x, [y, u]), f(x, [z, u]), f(y, [z, u]),

f(x, [y, [z, u]]), f(x, [z, [y, u]]).
(6.13)

We call these the primitive evaluations of f or primitives. Before we give the proof,
we give a few straightforward lemmas.

Lemma 6.3. Suppose x is an extremal element, and b, c ∈ L, then

f(x, [b, [x, c]]) = −f(b, [x, [x, c]]) = −f(b, x)f(x, c) = −f(x, b)f(x, c). (6.14)

Lemma 6.4. Suppose x, a ∈ L, not necessarily extremal, then

f(x, [x, a]) = f([x, x], a) = 0. (6.15)

Proof of Theorem 6.2 We let a, b ∈ L, and define M to be the set of monomials in
Equation 6.1. Because L is spanned by the 28 monomials in M and f is a bilinear
form, we only need to consider f(a, b) with a, b ∈M .

34 CHAPTER 6. LIE ALGEBRAS GENERATED BY FOUR EXTREMAL ELEMENTS

Moreover, we claim that we only need to consider f(a, b) with a ∈ {x, y, z, u} and
b ∈ M . Indeed, let a, b ∈ M . If a ∈ {x, y, z, u} we proved the claim, so suppose
a = [ã, Ã], with ã ∈ {x, y, z, u}. By associativity of f (see Theorem 3.6) we have

f(a, b) = f([ã, Ã], b) = f(ã, [Ã, b]),

and since [Ã, b] ∈ L, it is a linear combination of elements from M , so f(a, b) =
f(ã, [Ã, b]) is a linear combination of elements of the form f(ã, b̃) with ã ∈ {x, y, z, u}
and b̃ ∈M . This proves the claim.

From now on we consider f(a,A) for an extremal element a and a monomial A of
length at most 5. Furthermore, a, b, c, d, e, and g denote elements of the set {x, y, z, u}.
We do a case analysis on the length of A.

1. We have something of the form f(a, b). If b = a we have

f(a, b)a = f(a, a)a = [a, [a, a]] = 0 = 0a,

so f(a, b) = 0. Otherwise, f(a, b) is among the expressions in Equation 6.13.

2. We have f(a, [b, c]). If b = a or c = a we apply Lemma 6.4 to reduce the ex-
pression to a smaller case, otherwise ±f(a, [b, c]) is among the expressions in
Equation 6.13.

3. We have f(a, [b, [c, d]]). If b, c, d are not all distinct we have an obvious reduction
to a smaller case: if c = d it reduces to zero, if b = c (or similarly, if b = d) we
have

f(a, [b, [c, d]]) = f(a, [b, [c, b]]) = f(b, c)f(a, b).

So we assume b, c, d are all distinct.

• If a is equal to b, we apply Lemma 6.4 to reduce the expression to a smaller
case.

• If a is equal to c (or similarly, equal to d), we apply Lemma 6.3.

• So we assume a is distinct from b, c, and d. We verify that f(x, [y, [z, u]])
and f(x, [z, [y, u]]) are among the expressions in Equation 6.13, and

f(x, [u, [y, z]]) = f(x, [z, [y, u]])− f(x, [y, [z, u]]).

Since f(a, [b, [c, d]]) = −f(a, [b, [d, c]]) this covers all 3! = 6 cases where
a = x. We can reduce the other 4!− 6 = 18 cases to one of these by moving
x to the front, which is possibly by associativity and symmetry of f , for
example:

f(y, [z, [x, u]]) = −f(y, [z, [u, x]]) = −f([[y, z], u], x) = f(x, [u, [y, z]]).

So we covered all cases where a is distinct from b, c, and d.

This completes the proof for the case where the second argument is a monomial
of length 3.

4. We have f(a, [b, [c, [d, e]]]). If b, c, d, and e are not all distinct, we have an obvi-
ous reduction, either by extremality or by (P2). So we assume b, c, d, and e are
distinct, so amust be equal to one of them.

• If a = b, then we apply Lemma 6.4.

• If a = c, then we apply Lemma 6.3.

6.3. USING GAP TO FIND THE STRUCTURE 35

• If a = d (or similarly a = e) then f(a, [b, [c, [d, e]]]) = f(a, [b, [c, [a, e]]]) =
−f([b, a], [c, [a, e]]) = −f(b, [a, [c, [a, e]]]), which reduces to a smaller case
by (P2).

This completes the case where the length of the second argument of f is four.

5. We consider f(a, [b, [c, [d, [e, g]]]]). For sake of simplicity we only observe those
[b, [c, [d, [e, g]]]] that are elements ofM (other instances easily reduce to those), so
wemay take b = e and b, c, d, and g distinct. So we consider f(a, [b, [c, [d, [b, g]]]]).
Since b, c, d, and g are all distinct, amust be equal to one of them.

• If a = b, then we apply Lemma 6.4.

• If a = c, then we apply Lemma 6.3.

• If a = d, then

f(a, [b, [c, [d, [e, g]]]]) = −f([b, a], [c, [a, [e, g]]]) = −f(b, [a, [c, [a, [e, g]]]]),

which yields a reduction to a smaller case by (P2).

• If a = g, then

f(a, [b, [c, [d, [e, g]]]]) = f(a, [b, [c, [d, [b, a]]]])
= f([[a, b], c], [d, [b, a]])
= −f([c, [a, b]], [d, [b, a]])
= f([a, [b, c]], [d, [b, a]])

+f([b, [c, a]], [d, [b, a]])
= f([b, c], [a, [d, [a, b]]])

+f([a, c], [b, [d, [b, a]]]), (6.16)

and both terms reduce to a smaller case by (P2).

This completes the proof of Theorem 6.2. �

6.3 Using GAP to Find the Structure

In the previous section we proved that the structure of a Lie algebra generated by four
extremal elements is completely determined by 12 evaluations of f . We use this knowl-
edge to let GAP [S+95] create the multiplication table of this Lie algebra automatically.

We let R be the ring Q[f(x, y), f(x, z), f(x, u), f(y, z), f(y, u), f(z, u), f(x, [y, z]),
f(x, [y, u]), f(x, [z, u]), f(y, [z, u]), f(x, [y, [z, u]]), f(x, [z, [y, u]])]. We consider the uni-
versal enveloping algebraM in R of a Lie algebra generated by four variables (x, y, z,
and u), as defined in Section 2.6. We define the ideal I ofM to be the ideal generated
by the following 36 polynomials:

• 12 polynomials of the form [a, [a, b]]− f(a, b)a, for a, b ∈ {x, y, z, u}, and a and
b distinct, and we translate f(a, b) to ± one of the expressions in Equation 6.13.
This indeed gives us 4 · 3 = 12 relations.

• 12 polynomials of the form [a, [a, [b, c]]] − f(a, [b, c])a, for a, b, c ∈ {x, y, z, u}
and a, b, and c distinct, and we translate f(a, [b, c]) to ± one of the expressions
in Equation 6.13. Obviously, if we include [a, [a, [b, c]]], we may omit [a, [a, [c, b]]],
so this indeed gives us 4 · 3 · 2 · 1

2 = 12 relations.

• 12 polynomials of the form [a, [a, [b, [c, d]]]] − f(a, [b, [c, d]])a, for {a, b, c, d} =
{x, y, z, u}, and we translate f(a, [b, [c, d]]) to ±f(x, [y, [z, u]]), ±f(x, [z, [y, u]]),
or a sum of those two. This gives 4!/2 = 12 relations.

36 CHAPTER 6. LIE ALGEBRAS GENERATED BY FOUR EXTREMAL ELEMENTS

This means that I ‘describes’ the fact that x, y, z, and u are extremal elements. Using
GBNP [CG05], we can calculate a Gröbner basis for I , and thus we are able to perform
calculations in the quotient algebraM/I . InM/I we straightforwardly calculate a basis
for the algebra generated by x, y, z, and u.

The following corollary immediately follows from Theorem 6.2.

Corollary 6.5. Using the above procedure every element of R corresponds to exactly
one Lie algebra generated by four extremal elements.

We find a 28-dimensional algebra L in R, and verifying the Jacobi identity shows
that L indeed is a Lie algebra. However, the structure is not determined until we fix f .
As a first test we let all the values in Equation 6.13 be either 0 or 1, and for all these
212 = 4096 Lie algebras we store the following properties, where L is the Lie algebra
and S is Rad(L):

• dim(S): the dimension of the radical of L,

• dim(L/S): the dimension of L/S,

• L/S simple: whether L/S is simple or not.

The results are summarized in Table 6.1. We conclude the following:

1. In more than half of the cases we find a simple Lie algebra of dimension 28, i.e.
it is isomorphic to D4,

2. In 1090 cases, L/S is a simple Lie algebra of dimension 21, i.e. it is isomorphic
to B3,

3. In 460 cases, L/S is simple of dimension 15, i.e. it is isomorphic to A3,

4. In 104 cases, L/S is simple of dimension 14, i.e. it is isomorphic to G2,

5. In 14 cases, L/S is simple of dimension 10, i.e. it is isomorphic to B2,

6. In 174 cases, L/S is simple of dimension 8, i.e. it is isomorphic to A2,

7. In 3 cases, L/S is not simple and of dimension 6. Verification of these three
cases gives that each of them is isomorphic to A1 ×A1,

8. In 23 cases, L/S is simple of dimension 3, i.e. it is isomorphic to A1, and

9. In 1 case we find a solvable Lie algebra. This is of course the case where f ≡ 0.

Count dim(S) dim(L/S) L/S simple
1 2227 0 28 true
2 1090 7 21 true
3 460 13 15 true
4 104 14 14 true
5 14 18 10 true
6 174 20 8 true
7 3 22 6 false
8 23 25 3 true
9 1 28 0 N/A

Table 6.1: Summary of 4096 Lie algebras generated by 4 extremal elements

6.4. THE NILPOTENT CASE AND BEYOND 37

These results are in line with what Cohen et al. predicted in their paper [CSUW01,
Section 7]. Moreover, they agree with Theorem 3.16.

Remark 6.6. There is one remark we should make on the implementation of the above
in GAP. Although 36 polynomials above should give an ideal I we can work with, the
Gröbner basis algorithm is known for its slowness and huge intermediate results. Prac-
tice shows that the 36 polynomials above indeed give huge intermediate results, and
the calculations do not finish in less than 15 hours. Therefore, we make the following
observation.

Let x be an extremal element of L, and let m ∈ M . Then ad2
xm is in L since x is

an extremal element, so ad2
xm = 0 inM/L. Thus we may add x2, y2, z2, and u2 to the

ideal I . Now we find that the Gröbner basis calculation ends within seconds.

6.4 The Nilpotent Case and Beyond

In this section we introduce a modification of the method presented in the previous
section. The motivation for the development of this algorithm is twofold. Firstly, we
wish to study the case where a Lie algebra is generated by five extremal elements, and
practice shows that our current method is far too slow. Secondly, we wish to study some
degenerate cases, as described in Section 6.5. For the remainder of this section, we will
refer to the algorithm from the previous section as ‘the old algorithm’, and the one to
be introduced here as ‘the new algorithm’. Our new algorithm breaks down into two
steps: first, we find a basis for the Lie algebra on hand, and after that we try to find the
evaluation of the bilinear form f on these basis elements. Some more observations on
these algorithms can be found in Chapter 7.

For the first step, we use an approach similar to the old algorithm, with one major
difference: we take the bilinear form f to be identically zero. This is implemented as
follows.

The basis will be the set B, containing monomial basis elements. In every step of
the algorithm, monomial basis elements of length m + 1 are calculated from mono-
mial basis elements of length m. For ease of reading, the length of a monomial m is
denoted by |m|. The (non-commutative) Gröbner basis describing extremality will be
denoted by GB. Calculating the Gröbner basis of a set X is denoted by Grobner(X).
’Cleaning’ a set of potential basis elements is denoted by Clean(B′). This amounts to
repeatedly trying to divide b ∈ B′ by B′\{b}, and removing b from B′ if the division
was successful.

1. B := {1, . . . , N};

2. m := 1;

3. G := ∅;

4. While B changed:

(a) G := G ∪ {iij − 2iji+ jji | i, j ∈ B, |i| = 1, |j| = m};
(b) GB :=Grobner(G);

(c) B′ := {(ij − ji) mod GB | i, j ∈ B, |i| = 1, |j| = m};
(d) B := B ∪ Clean(B′);

(e) m := m+ 1;

5. Return B;

38 CHAPTER 6. LIE ALGEBRAS GENERATED BY FOUR EXTREMAL ELEMENTS

This algorithm was implemented in GAP.

The main advantages of this new algorithm over the old one are the following:

• The Gröbner basisGB in the new algorithm contains only homogeneous polyno-
mials (iij − 2iji+ jji), opposed to the old algorithm, where it mainly contained
non-homogeneous polynomials (iij − 2iji+ jji+ αi). This enables the use of a
graded Gröbner basis algorithm, which gives an enormous speed-up.

• We do not need to know the primitive evaluations of f in advance (c.f. Theorem
6.2). Especially in the five generator case this is a great advantage, as it is far
from obvious which are the primitives.

The main disadvantage is that we are no longer able to calculate the multiplication
table of the resulting Lie algebra simultaneously. This is why we invented the follow-
ing algorithm, operating on the resulting basis. In short, this algorithm automates the
proof of Theorem6.2. The core of this algorithm is try_to_write_as_irreducibles,
which employs various methods such as associativity, extremality (i.e. f(y, [x, [x, z]]) =
f(x, z)f(y, x)), the first two Premet rules (Lemma 3.3), and the Jacobi identity (in the
sense that it rewrites [a, [b, c]] to −[b, [c, a]] − [c, [a, b]]). A sketch of the way the algo-
rithm works on a basisB (of size n) is given below. We write P for the set of primitives.

1. P := ∅;

2. M := empty n× nmatrix;

3. For i in {1, . . . , n} do

(a) For j in {1, . . . , i} do

i. If try_to_write_as_irreducibles(f(Bi, Bj)) returns a combination
p of elements from P ,
then storeMi,j := p,
otherwise storeMi,j := f(Bi, Bj) and set P := P ∪ f(Bi, Bj);

4. Return (P,M).

This algorithm was implemented in C++. Note that, under the assumption that
try_to_write_as_irreducibles indeed returns a reduced form if that is possible,
this algorithm finds both a set of primitives and the evaluation of f on the basis ele-
ments. We then use the theorems presented in Section 3.3, particularly Theorem 3.9
and Remark 3.15, to analyse the structure of the Lie algebra generated by N extremal
elements.

In practice, this new algorithm returns a 28-dimensional basis for the four genera-
tor case in about a second instead of two minutes, and the evaluation of f on the basis
elements is found in less than five seconds. The analysis of 4096 cases (see Section 6.3)
now takes about two minutes instead of eight or nine hours. The gain in performance
is obvious. Moreover, the second part of the algorithm (which is the ‘hardest’ part) was
implemented in C++, so it is subject to regular compiler optimization and can easily
be executed on an arbitrary computer.

6.5. ANALYSIS OF DEGENERATE CASES 39

6.5 Analysis of Degenerate Cases

In this section we consider special cases of Lie algebras generated by 4 extremal ele-
ments. We study them by means of pictures such as the ones below, which are easiest
explained by means of an example: In the picture for D1.1 we see 4 extremal genera-
tors, labeled 1, 2, 3, and 4. A line is drawn between two generators i and j if [i, j] 6= 0,
and if no line is drawn between i and j then [i, j] = 0. Consequently, for D1.1 we have
[1, 2] = [1, 3] = [2, 3] = 0. If [i, j] = 0 for at least one pair (i, j), we call it a degenerate
case.

It is important to note that a picture does not uniquely determine a Lie algebra: if no
line is drawn we know dim(〈i, j〉) = 2, and if a line is drawn we know dim(〈i, j〉) = 3.
However, if a line is drawn, either 〈i, j〉 ∼= sl2 or 〈i, j〉 ∼= h (see Theorem 4.1). This
means that though the dimension of the Lie algebra is determined by the picture alone,
the dimension of its radical certainly is not.

A Lie algebra is determined by a picture if we fix the evaluation of f . As indicated
below, the most general case of D1.1 has a 9-dimensional radical. This occurs for in-
stance if we pick f(1, 4) = f(2, 4) = f(3, 4) = 1 (it is not hard to see that the other
9 primitive evaluations of f are equal to 0). However, if we would take f ≡ 0, we
have a 12-dimensional radical (cf Theorem 3.9). Unless otherwise mentioned, when
discussing ‘the’ Lie algebra induced by a picture we mean the most general one, i.e.
the one with a radical of smallest dimension.

A straightforward approach to finding all possible degenerate cases is by consider-
ing all connected undirected simple graphs G on 4 vertices. We partition this space of
connected undirected simple graphs by the sum of the degrees of the vertices. Then,
for each partition (each possible sum S of degrees), we write down all possible combi-
nations of positive degrees summing up to S. From these combinations we then draw
0 or more possible graphs.

It is obvious that the sum S is always even, and the number of edges is 1
2S. More-

over, since G should be connected, we must have at least 3 edges, so S ≥ 6, and since
G is simple, we have at most

(
4
2

)
= 6 vertices, so S ≤ 12. Actually, the case where

S = 12 is not a degenerate case, but we will include it for sake of completeness.

It should be noted that not all combinations of degrees summing up to S actually
give a connected simple graph. Consider for example S = 8 and see that 8 = 3 + 3 +
1 + 1 (case D2.1 below). However, these degrees imply that 2 vertices are connected
to all others, and the other 2 vertices are connected to only one other vertex, which is
obviously impossible. From now on, we will write ‘no associated Lie algebra’ for cases
such as this one.

We used the algorithm described in the previous section to find the dimension
of the Lie algebra and its radical, and we will use Theorem 3.16 and Appendix A to
indicate which simple Lie algebras arises. These results were verified by Algorithm III,
as described in Section 7.3.

� 4

� 1 � 2

�
3

6 = 3+1+1+1: D1.1, where [1, 2] = [1, 3] = [2, 3] = 0,
has dimension 12 and in general a radical of dimen-
sion 9, leaving a semi-simple part of dimension 3. This
is A1.

40 CHAPTER 6. LIE ALGEBRAS GENERATED BY FOUR EXTREMAL ELEMENTS

� 1 � 2 � 3 � 4 6 = 2+2+1+1: D1.2, where [1, 3] = [1, 4] = [2, 4] = 0,
has dimension 10 and in general a trivial radical. This
is C2, see Section 9.2.

8 = 3 + 3 + 1 + 1: D2.1, no associated Lie algebra.

� 4

� 1 � 2

�
3

8 = 3 + 2 + 2 + 1: D2.2, where [1, 3] = [2, 3] = 0, has
dimension 15 and in general a trivial radical. This is
A3.

� 1

�
2

�

3

�
4

8 = 2 + 2 + 2 + 2: D2.3, where [1, 3] = [2, 4] = 0, has
dimension 15 and in general a trivial radical. This is
A3, see Section 9.1.

10 = 3 + 3 + 3 + 1: D3.1, no associated Lie algebra.
� 1

�
2

�

3

�
4

10 = 3 + 3 + 2 + 2: D3.2, where [2, 4] = 0, has dimen-
sion 21 and in general a trivial radical. This must be
B3.

� 1

�
2

�

3

�
4

12 = 3 + 3 + 3 + 3: The most general case, dimension
28, discussed in previous sections.

Remark 6.7. As can be found in Appendix A, the simple Lie algebras generated by four
extremal elements and no fewer are B2, G2, A3, B3, and D4. In the analysis above, we
find B2, A3, B3, and D4 as general instance of a degenerate case. However, G2 is not
found that way. It is, however, the semi-simple part of one of the instances of the 28-
dimensional Lie algebra discussed in Section 6.3, and it is the semi-simple part of one
of the instances of D3.2 as well.

Chapter 7

Intermezzo: Algorithms

In this chapter we give an overview of the algorithms introduced in previous chapters,
consider their advantages and disadvantages, and present a new algorithm. Algorithm
I was introduced in Section 6.2, and depends on the knowledge of the primitive eval-
uations of f in advance, which is a big drawback. Given values for these primitive
evaluations, it returns the appropriate Lie algebra. Algorithm II, introduced in Section
6.4, does not suffer from this drawback, but it is a bit slower. Given the number of
extremal generators (and possibly some commutators), this algorithm returns a basis
for the Lie algebra, and the evaluation of f on the basis elements. Using this data
it is possible to calculate the minimal dimension of the radical. Algorithm III, to be
introduced in Section 7.3, is a combination of these two algorithms.

7.1 Algorithm I

The first algorithmwas introduced in Section 6.2 and was implemented in GAP [S+95],
heavily depending on the GBNP package[CG05]. This algorithm is useful if we know
the primitive evaluations of f . Given values for these evaluations, it returns the ap-
propriate Lie algebra. Indeed, in the four generator case we know the 12 primitive
evaluations of f , and we are therefore able to construct a quotient algebra containing
the required Lie algebra. Given these primitive evaluations, this algorithm is not very
fast, but it is not very slow either.

The main drawback of this algorithm is that if these primitive evaluations are not
known, we are not able to give a basis for the required ideal and this algorithm is
worthless. The main advantage of this algorithm is that once it is finished and we have
fixed f , we can use all the functions GAP provides for working with Lie algebras. This
means that we can ask for the SemiSimpleType or calculate its LieSolvableRadical,
for example.

The (slightly annotated) implementation of this algorithm can be found in Ap-
pendix C.2.

Remark 7.1. Note that we sometimes fix the primitive evaluations of f in advance. This
means that we carry out our calculations in Q instead of in Q[f(x, y), f(x, z), f(x, u),
f(y, z), f(y, u), f(z, u), f(x, [y, z]), f(x, [y, u]), f(x, [z, u]), f(y, [z, u]), f(x, [y, [z, u]]),
f(x, [z, [y, u]])] (in the four generator case), and this greatly speeds up the algorithm.
Especially in the five generator cases this optimization is needed to make sure that the
calculations end before this Master’s thesis was finished. The drawback is that apply-
ing this optimization makes the algorithm return exactly one Lie algebra instead of an
entire range of Lie algebras.

41

42 CHAPTER 7. INTERMEZZO: ALGORITHMS

The following GAP listing shows how this algorithm was used for the degenerate
case D2.2 (see Section 6.5):

Read("algorithm1.g");;

N := 4;

commutators := [[1,3], [2 ,3]];

5 KI := BaseKI(N, commutators);

f21 := 1;

f41 := 2;

f42 := 3;

10 f43 := 4;

f124 := 5;

addext2(KI, elt(2), elt(1), f21);

addext2(KI, elt(4), elt(1), f41);

15 addext2(KI, elt(4), elt(2), f42);

addext2(KI, elt(4), elt(3), f43);

addext3(KI, elt(1), elt(2), elt(4), f124);

result := FindLieAlgebra(N, KI);

Executing this in GAP gives:

Input KI size 17

Size of GB is 26

Generating basis ...

5 The basis has size 15. Cleaning ...

Cleaned. The basis has size 15.

The resulting Lie Algebra basis has size 15

10 Constructing Table of Structure Constants Done.

Constructing Lie Algebra by Structure Constants ... Done

Algebra(Rationals , [v.1, v.2, v.3, v.4, v.5, v.6, v.7,

v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15])

Lie Algebra of dim: 15

15 Radical of dim : 0

Simple : true

Semi Simple Type : A3

Time used:

Groebner Basis : 70

20 Lie Algebra Basis : 771

Clean LA Basis: : 0

Lie Algebra Constr: 160

SemiSimpleType : 1122

TOTAL : 2123

7.2 Algorithm II

The second algorithm was introduced in Section 6.4 and was implemented in a com-
bination of GAP (again using GBNP) and C++. This algorithm is useful if we do not
know the primitive evaluations of f in advance. Given the number of extremal gen-
erators, and possibly some commutators, the first step of this algorithm generates a
basis of the Lie algebra. The second step determines the evaluation of f on these ba-
sis elements, finding primitive evaluations of f in the process. The first step of this

7.3. ALGORITHM III 43

algorithm is rather fast, but the second step is too slow, especially in the five generator
case.

The main drawback of this algorithm is that the second step is too slow for our
purposes. Moreover, even if the second step finishes in time, we only have the minimal
dimension of the radical (see Remark 3.15), and almost no information on the semi-
simple part of the Lie algebra. This second drawback however, is not to be taken too
seriously, as Theorem 3.16 and Appendix Amostly provide us with enough information
to deduce the structure of the semi-simple part. The main advantage of this algorithm
is that it does not need the primitive evaluations of f in advance, so we are able to
calculate a basis for any Lie algebra generated by extremal elements. Moreover, as a
side effect, it returns the primitive evaluations of f .

For sake of completeness, we have included the implementation of the first step of
this algorithm in Appendix C.3. For example, for the degenerate case D2.2, we would
use this algorithm as follows:

Read("algorithm2a.g");;

N := 4;

commutators := [[1,3], [2 ,3]];

5 findeebasis(N, commutators);;

The result of executing this in GAP is as follows:

LOG: Starting groebner basis calculation at degree 1

LOG: Groebner basis calculation finished. Runtime: 40 msces.

LOG: Generating elements of length 2

LOG: Generated 8 elements of length 2

5 LOG: Cleaning basis , input elements: 8

LOG: Removing element 1 from basis.

LOG: Removing element 1 from basis.

LOG: Removing element 2 from basis.

LOG: Removing element 2 from basis.

10 LOG: Basis cleaned , output elements: 4

LOG: --> Adding 4 of 8 bracketings of length 2, 8 so far.

LOG: Starting groebner basis calculation at degree 4

<<Generation of elements of length 3 to 5 removed >>

LOG: Groebner basis calculation finished. Runtime: 70 msces.

15 LOG: Generating elements of length 6

LOG: Generated 0 elements of length 6

LOG: Basis of 15 elements found

LOG: Total time taken: 591 msecs.

We applied this algorithm to find the types of the degenerate cases of Lie algebras
generated by four extremal elements (Section 6.5), and some generated by five extremal
elements (E1.x and E2.x in Section 8.2). From E3.x onwards this algorithm was too
slow.

7.3 Algorithm III

Comparing the advantages and the drawbacks of these algorithms, it seems like a good
idea to use a combination of the two algorithms. Indeed, Algorithm II gives primitive
evaluations of f as a side effect, which can serve as input for Algorithm I. In this
approach, two characteristics of the algorithms are very convenient. Firstly, the second
step of Algorithm II will return some (maybe all) primitive evaluations of f ‘early’ in
the process, because of the way the basis elements are traversed. Secondly, if Algorithm
I gives a result, we know it is a correct result. Indeed, we only insert relations that we
know to be true into the basis of the proposed ideal. Once the result of Algorithm I is a

44 CHAPTER 7. INTERMEZZO: ALGORITHMS

Lie algebra of dimension at most the dimension of the Lie algebra returned by the first
step of Algorithm II, we know it is the Lie algebra we were searching.

The combination of these characteristics makes it possible to start with Algorithm
II, cancel it halfway into its second step, and fiddle around with the primitive evalua-
tions of f in Algorithm I until it gives a result. We applied this algorithm successfully
to verify the types of the degenerate cases in Section 6.5, to verify the types of E1.x and
E2.x in Section 8.2, and to find the types of E3.x in Section 8.2.

Remark 7.2. It should be noted that both Algorithm I and II (and therefore Algorithm
III as well) can be easily adapted to work with degenerate cases, such as those in Sec-
tions 6.5 and 8.2. For example, if [a, b] = 0, wemay add ab−ba to the ideal in Algorithm
I and the first step of Algorithm II, and we tell the second step of Algorithm II that [a, b]
can be reduced to 0.

Chapter 8

Lie Algebras Generated by Five
Extremal Elements

In this chapter we study Lie algebras generated by five extremal elements. In Section
8.1 we show that the five generator case significantly differs from the two, three, and
four generator cases: there is no semi-simple Lie algebra generated by five extremal
elements of maximal dimension, i.e. a 537-dimensional Lie algebra generated by five
extremal elements always has a non-trivial radical. In Section 8.2 we study the degen-
erate cases.

8.1 Structure

As stated in Section 4 of [CSUW01], the general Lie algebra generated by five extremal
elements has dimension 537. Using the first step of Algorithm II we have been able
to reproduce this dimension. Unfortunately, the second step is far too slow to calculate
the radical of this Lie algebra.

Recall that a Lie algebra generated by two extremal elements has dimension 3, and
there exists a semi-simple Lie algebra of dimension 3 generated by two extremal ele-
ments, namely A1 (see Section 4.1). Similarly, there exists a semi-simple Lie algebra of
dimension 8 generated by three extremal elements, namely A2 (see Section 5.2), and
there exists a semi-simple Lie algebra of dimension 28 generated by four extremal el-
ements, namely D4 (see Section 6.3). The following corollary, a direct consequence of
Theorem 3.16, states that no semi-simple Lie algebra of dimension 537 generated by
five extremal elements exists.

Corollary 8.1. There exists no simple or semi-simple Lie algebra of dimension 537
generated by 5 extremal elements.

Proof As stated in Chapter 8, a Lie algebra L generated by 5 extremal elements has di-
mension 537 in general. However, Theorem 3.16 implies that with 5 extremal elements
we are only able to generate a small number of different semi-simple Lie algebras.

We consider the data in Appendix A, and note that a Lie algebra generated by 1
extremal element is solvable, so it does not contribute to a higher-dimensional semi-
simple part. Now we see that with 5 extremal elements (and no fewer) we are able to
generate the semi-simple Lie algebra A2 + A1 (dimension 11) or a simple Lie algebra
of dimension at most 248 (i.e. E8). This implies that no semi-simple Lie algebra of
dimension 537 generated by five extremal elements exists. �

45

46 CHAPTER 8. LIE ALGEBRAS GENERATED BY FIVE EXTREMAL ELEMENTS

Unfortunately, our algorithms are too slow to find the generic radical. However, as
found by Knopper [Kno04, Section 6.4], the simple Lie algebra E8 only has a trivial
quadratic module. This implies that the 537− 248 = 289 dimensional radical consists
of 289 trivial 1-dimensional radicals.

Moreover, using Appendix A, we see that at least 20 extremal elements are needed
to generate a 537-dimensional semi-simple Lie algebra: EitherE8+E8+A5+A1+A1,
which has dimension 2·248+35+2·3 = 537, and requires 2·5+6+2·2 = 20 extremal
elements, orE8 +E8 +D4 +B2 +A1, which has dimension 2 ·248+28+10+3 = 537,
and requires 2 · 5 + 4 + 4 + 2 = 20 extremal elements as well.

8.2 Analysis of Degenerate Cases

In this section we study degenerate cases of Lie algebras generated by five extremal
elements. The meaning of the pictures below is explained in Section 6.5. We quickly
see that the number of edges now is at least 4 and at most

(
5
2

)
= 10, so 8 ≤ S ≤ 20.

The most notable difference between these degenerate cases and the ones generated by
four extremal elements, is that one combination of degrees may give rise to more than
one graph: see for example E2.4 and E2.5.

For the cases with 4 or 5 edges, we used Algorithm II to find the dimension of the
most general instance and its radical, and Theorem 3.16 and Appendix A to indicate
which simple Lie algebras arises. We used Algorithm III to verify these results. For the
cases with 6 edges, we used Algorithm III to find the most general type. For the cases
with 7 or more edges our algorithms were too slow, so we can only guess what their
type is.

�
1 � 2

�
3

�
4

� 5
8 = 4 + 1 + 1 + 1 + 1: E1.1, where [1, 2] = [1, 3] =
[1, 4] = [2, 3] = [2, 4] = [3, 4] = 0, has dimension 28
and in general a radical of dimension 0. This implies
that this Lie algebra is isomorphic to D4.

� 1 � 2 � 3 � 4

�

5

8 = 3 + 2 + 1 + 1 + 1: E1.2, where [1, 3] = [1, 4] =
[1, 5] = [2, 4] = [2, 5] = [4, 5] = 0, has dimension
20 and in general a radical of dimension 10, leaving a
semi-simple part of dimension 10. This semi-simple
part must be of type C2.

� 1 � 2 � 3 � 4 � 5 8 = 2 + 2 + 2 + 1 + 1: E1.3, where [1, 3] = [1, 4] =
[1, 5] = [2, 4] = [2, 5] = [3, 5] = 0, has dimension 15
and in general a radical of dimension 5, leaving a semi-
simple part of dimension 10. This part must be of type
C2 as well.

8.2. ANALYSIS OF DEGENERATE CASES 47

10 = 4+3+1+1+1: E2.1, no associated Lie algebra.
�

1 � 2

�
3

�
4

� 5
10 = 4 + 2 + 2 + 1 + 1: E2.2, where [1, 2] = [1, 3] =
[1, 4] = [2, 4] = [3, 4] = 0, has dimension 36 and in
general a trivial radical. This Lie algebra must be of
type B4.

�
1 � 2

�
3

�
4

� 5
10 = 3 + 3 + 2 + 1 + 1: E2.3, where [1, 3] = [1, 4] =
[1, 5] = [2, 4] = [4, 5] = 0, has dimension 30 and
in general a radical of dimension 15, leaving a semi-
simple part of dimension 15. This semi-simple part
must be A3.

�
1

�
2

� 3 � 4 � 5
10 = 3 + 2 + 2 + 2 + 1: E2.4, where [1, 4] = [1, 5] =
[2, 4] = [2, 5] = [3, 5] = 0, has dimension 24 and in
general a trivial radical. This Lie algebra must be iso-
morphic to A4.

�
1 � 2

�
3

�
4

� 5
10 = 3 + 2 + 2 + 2 + 1: E2.5, where [1, 3] = [1, 5] =
[2, 4] = [3, 5] = [4, 5] = 0, has dimension 30 and
in general a radical of dimension 15, leaving a semi-
simple part of dimension 15. This semi-simple part
must be of type A3.

� 1

�
2

�
3

�
4

�
5

10 = 2 + 2 + 2 + 2 + 2: E2.6, where [1, 3] = [1, 4] =
[2, 4] = [2, 5] = [3, 5] = 0, has dimension 24 and in
general an empty radical. This must beA4, see Section
9.1.

12 = 4+4+2+1+1: E3.1, no associated Lie algebra.
12 = 4+3+3+1+1: E3.2, no associated Lie algebra.

�
1 � 2

�
3

�
4

� 5 12 = 4 + 3 + 2 + 2 + 1: E3.3, where [1, 2] = [1, 3] =
[2, 3] = [2, 4] = 0, has dimension 52. This Lie algebra
is of type F4.

�
1 � 2

�
3

�
4

� 5 12 = 4 + 2 + 2 + 2 + 2: E3.4, where [1, 2] = [1, 3] =
[2, 4] = [3, 4] = 0, has dimension 45. This Lie algebra
is of type D5.

48 CHAPTER 8. LIE ALGEBRAS GENERATED BY FIVE EXTREMAL ELEMENTS

�
1 � 2

�
3

�
4

� 5 12 = 3 + 3 + 3 + 2 + 1: E3.5, where [1, 2] = [1, 3] =
[1, 5] = [2, 4] = 0, has dimension 45. This Lie algebra
is of type D5.

�
1 � 2

�
3

�
4

� 5 12 = 3 + 3 + 2 + 2 + 2: E3.6, where [1, 3] = [1, 5] =
[2, 4] = [3, 5] = 0, has dimension 52. This Lie algebra
is of type F4.

�
1 � 2

�
3

�
4

� 5 12 = 3 + 3 + 2 + 2 + 2: E3.7, where [1, 3] = [1, 4] =
[2, 4] = [3, 5] = 0, has dimension 45. This Lie algebra
is of type D5.

14 = 4+4+4+1+1: E4.1, no associated Lie algebra.

� 1 � 2

�

3

�

4

�

5

14 = 4 + 4 + 2 + 2 + 2: E4.2, where [3, 4] = [3, 5] =
[4, 5] = 0, has dimension 86. This could be E6, which
has dimension 78, and an 8-dimensional radical (see
Section 8.3).

�
1 � 2

�
3

�
4

�
5

14 = 4 + 3 + 3 + 3 + 1: E4.3, where [1, 5] = [3, 5] =
[4, 5] = 0, has dimension 78. This probably is E6 (see
Section 8.3).

�
1 � 2

�
3

�
4

� 5 14 = 4 + 3 + 3 + 2 + 2: E4.4, where [1, 2] = [1, 3] =
[2, 4] = 0, has dimension 78. This probably is E6 (see
Section 8.3).

�
1 � 2

�
3

�
4

� 5 14 = 3 + 3 + 3 + 3 + 2: E4.5, where [1, 3] = [1, 5] =
[2, 4] = 0, has dimension 78. This probably is E6 (see
Section 8.3).

8.3. ISOMORPHIC DEGENERATE CASES 49

16 = 4+4+4+3+1: E5.1, no associated Lie algebra.
16 = 4+4+4+2+2: E5.2, no associated Lie algebra.

�
1 � 2

�
3

�
4

�
5

16 = 4 + 4 + 3 + 3 + 2: E5.3, where [1, 5] = [4, 5] = 0,
has dimension 134. Our best guess is that this is E7

and a one dimensional radical (see Section 8.3).

�
1 � 2

�
3

�
4

� 5 16 = 4+3+3+3+3: E5.4, where [1, 3] = [2, 4] = 0, has
dimension 133. We guess that this is E7 (see Section
8.3).

18 = 4+4+4+4+2: E6.1, no associated Lie algebra.
�

1 � 2

�
3

�
4

� 5 18 = 4 + 4 + 4 + 3 + 3: E6.2, where [1, 3] = 0, has
dimension 249. This most probably is E8 and an addi-
tional one dimensional radical.

�
1 � 2

�
3

�
4

� 5 20 = 4+4+4+4+4: Themost general case, dimension
537.

Remark 8.2. Similarly to the discussion in Remark 6.7 we observe which simple Lie
algebras generated by five extremal elements and no fewer occur as general instance of
a degenerate case. From the data in Appendix A we see thatA4, B4, D5, F4, E6, E7, and
E8 are generated by five extremal elements and no fewer. We suspect that all of these
occur as general instance of a degenerate case. For A4, B4, D5, and F4 we showed this,
and for E6, E7, and E8 we think this is the case.

This would imply that G2 is an exception among the exceptional Lie algebras: it is
the only one that is not the general instance of a degenerate case.

8.3 Isomorphic Degenerate Cases

As mentioned in the introduction of the previous section, we were unable to calculate
the Lie type of cases E4.x, E5.x, and E6.x. In this section we give some more informa-
tion on E4.x and E5.x. To do that, we introduce a way of rewriting a picture such as
those in the previous section to an (almost) isomorphic picture.

We adopt the usual setting of a Lie algebra L over a field F generated by extremal
elements, and let x ∈ E . Recall that exp(x, s) = 1 + sadx + 1

2s
2ad2

x, and remember
that exp(x, s) is a Lie algebra automorphism (cf Definition 3.4). We again consider a
Lie algebra described by a picture, and study what happens if we replace one of the
‘nodes’ y by exp(x, s)y. We write yx for exp(x, s)y and note that nothing changes if

50 CHAPTER 8. LIE ALGEBRAS GENERATED BY FIVE EXTREMAL ELEMENTS

x

y

x

y x

x

y

z

x

z

y x

x

y

z

x

z

y x

x

y

z

x

z

y x

x

y

x

y x

x

y

z

x

z

y x

x

y

z

x

z

y x

x

y

z

x

z

y x

A B

x

y

x

y x

x

y

z

x

z

y x

x

y

z

x

z

y x

x

y

z

x

z

y x

x

y

x

y x

x

y

z

x

z

y x

x

y

z

x

z

y x

x

y

z

x

z

y x

C D

Figure 8.1: Replacing y by exp(x, s)y

[x, y] = 0 since yx = y. For the remaining situations, we distinguish four cases. See
Figure 8.1.

A. If 〈x, y〉 ∼= sl2 then we have

〈x, yx〉 = 〈xx, yx〉 = 〈x, y〉x.

Since exp is an automorphism, we have 〈x, yx〉 ∼= sl2. This explains Figure 8.1A.

B. If 〈x, y〉 ∼= sl2 and z is such that 〈y, z〉 ∼= sl2 and [x, z] = 0, then we have 〈x, yx〉
as above, and

〈yx, z〉 = 〈yx, zx〉 = 〈y, z〉x.

So 〈yx, z〉 ∼= sl2. This explains Figure 8.1B.

C. If 〈x, y〉 ∼= sl2 and z is such that 〈x, z〉 ∼= sl2 and [y, z] = 0, then [yx, z] =
s[z, [x, y]] + 1

2s
2f(x, y)[x, z]. Now we have 〈x, yx〉 as above and

[z, [yx, z]] = −f(z, yx)z

= −(sf(z, [x, y]) +
1
2
s2f(x, y)f(z, x))z

= −(sf(x, [y, z]) +
1
2
s2f(x, y)f(z, x))z

= −1
2
s2f(x, y)f(x, z)z.

Moreover, straightforward calculations show that

[yx, [yx, z]] = (
1
2
s2f(x, y)f(x, z))(y+s[x, y]+

1
2
s2f(x, y)x) =

1
2
s2f(x, y)f(x, z)yx.

This means that if we set α = 1
2s

2f(x, y)f(x, z), we have [z, [yx, z]] = −αz
and [yx, [yx, z]] = αyx. So, provided that α 6= 0, we have 〈yx, z〉 ∼= sl2. Since
〈x, y〉 ∼= sl2 and 〈x, z〉 ∼= sl2, we have f(x, y) 6= 0 and f(x, z) 6= 0, so picking
any s 6= 0 gives 〈yx, z〉 ∼= sl2. This explains Figure 8.1C.

D. If 〈x, y〉 ∼= sl2 and z is such that both 〈y, z〉 and 〈x, z〉 are isomorphic to sl2, we
have [yx, z] = [y, z]− s[z, [x, y]]+ 1

2s
2f(x, y)[x, z]. Now we have 〈x, yx〉 as above

and

[z, [yx, z]] = −(f(z, yx)z)

= −(f(y, z) + sf(x, [y, z]) +
1
2
s2f(x, y)f(x, z))z.

8.3. ISOMORPHIC DEGENERATE CASES 51

Moreover, straightforward calculations show that

[yx, [yx, z]] = (f(y, z) + sf(x, [y, z]) +
1
2
s2f(x, y)f(x, z))yx.

This implies that if we set α = f(y, z) + sf(x, [y, z]) + 1
2s

2f(x, y)f(x, z), we
have [z, [yx, z]] = −αz and [yx, [yx, z]] = αyx. This means that 〈yx, z〉 ∼= sl2 if
we have α 6= 0. On the other hand, if α = 0, then 〈yx, z〉 is nilpotent (cf Case 2
of Theorem 4.1). Solving the quadratic equation α = 0 to s gives

s =
1

f(x, y)f(x, z)
(−f(x, [y, z])±

√
f(x, [y, z])2 − 2f(x, y)f(x, z)f(y, z)).

Always at least one of these two solutions is non-zero: Indeed, if f(x, [y, z]) = 0,
both solutions are non-zero as f(x, y), f(x, z), f(y, z) 6= 0. If f(x, [y, z]) 6= 0,
it depends on the value of f(x, [y, z])2 − 2f(x, y)f(x, z)f(y, z) whether we have
one or two non-zero solutions. Note that it may require a field extension to be
able to use such a non-zero solution, though. This explains Figure 8.1D.

Now to see why we can use these rewrite rules, we consider L the original Lie
algebra generated by extremal elements, so L = 〈x, y, z, . . .〉, and L′ the new one, i.e.
L′ = 〈x, yx, z, . . .〉. We show that y ∈ L′. Observe y = yx − s[x, y]− 1

2s
2f(x, y)x and

obviously yx ∈ L′ and 1
2s

2f(x, y)x ∈ L′, and furthermore [x, y] ∈ L′ since [x, yx] =
[x, y] + sf(x, y)x and [x, yx] ∈ L′ and sf(x, y)x ∈ L′. So indeed y ∈ L′. However,
we must be careful when using these rules: if we start with a semi-simple Lie algebra,
after applying rewrite rules the evaluation of f may have changed, so the result may be
a Lie algebra containing a non-trivial radical.

So below we show that at least one of the Lie algebras induced by the picture we
end up with after applying the rewrite rules, is isomorphic to the most general Lie
algebra induced by the picture we started with. We denote this relation by→. We show
E4.4 → E4.3, E4.4 → E4.5, E4.5 → E4.2, and E5.4 → E5.3. First, we consider E4.x:

• E4.4 → E4.3: Pick x = 5 and y = 3. Then either 〈2, 3〉 or 〈3, 4〉 disappears
into the radical (depending on our choice of s). We choose s such that 〈2, 3〉
disappears. 〈1, 3〉 appears, and we are done.

• E4.4 → E4.5: Pick x = 4 and y = 1. Then 〈1, 5〉 goes into the radical, 〈1, 3〉
appears, and we are done.

• E4.5 → E4.2: Pick x = 2 and y = 5. Then 〈5, 3〉 goes into the radical, 〈1, 3〉
appears, and we are done.

Now we consider E5.x:

• E5.4 → E5.3: Pick y = 1 and x = 5. Then either 〈1, 2〉 or 〈1, 4〉 disappears
into the radical (depending on our choice of s). We choose s such that 〈1, 2〉
disappears. 〈1, 3〉 appears, and we are done.

So for the cases we were unable to calculate using one of the algorithms described
in Chapter 7, it seems very probably that only three essentially different Lie algebras
remain, probably E6, E7, and E8 (dimensions 78, 133, and 248).

52 CHAPTER 8. LIE ALGEBRAS GENERATED BY FIVE EXTREMAL ELEMENTS

Chapter 9

Lie Algebras Generated by n
Extremal Elements

This chapter contains statements on Lie algebras generated by arbitrary many extremal
elements, fulfilling certain demands. More specifically, we show which degenerate
cases are isomorphic to An (n ≥ 1), and which degenerate cases are isomorphic to Cn
(n ≥ 2). Furthermore, in Section 9.4 we give three conjectures, in which we suggest
degenerate cases isomorphic to Bn (n ≥ 4) and Dn (n ≥ 5).

9.1 An

Theorem 9.1. Let L be a Lie algebra generated by n (where n ≥ 2) extremal elements
x1, . . . , xn, such that

[xi, xj] = 0 if |i− j| ≥ 2 and {i, j} 6= {1, n}, (9.1)

and
[xi, xj] 6= 0 if |i− j| = 1 or {i, j} = {1, n} (9.2)

(cf D2.3 and E2.6 in Sections 6.5 and 8.2, respectively). Then L is linearly generated by the
following n2 − 1 monomials (for ease of reading, we identify xn+i and xi if i ≥ 1):

[xi, [xi+1, [. . . , [xi+l−1, xi+l]]]], 1 ≤ i ≤ n, 0 ≤ l ≤ n− 2
[xi, [xi+1, [. . . , [xi+n−2, xi+n−1]]]], 1 ≤ i < n,

(9.3)

i.e. n(n− 1) monomials of length less than n, and n− 1 monomials of length n.

Proof First, we prove that every monomial of L (of length up to n) can be written as
a linear combination of monomials of the above form. For now, we will identify xn+i

and xi if i ≥ 1. We will prove this statement by induction on the length, the case where
the length of the monomial is 1 being trivial.

So suppose that we proved the statement for monomials of length up to l+1 (l+1 6=
n), and let x ∈ L be a monomial of length l+ 2. By the induction hypothesis, we know
that

x = [xp, [xi, [xi+1, [. . . , [xi+l−1, xi+l]]]]] (9.4)

for some p and some i, with 1 ≤ p, i ≤ n. If p = i− 1, we proved the induction step. If
p = i we apply extremality of xi, and the induction hypothesis gives the induction step.
If p = i+ 1 we apply (P2), and the induction hypothesis gives the induction step.

In all other cases, we note (by the Jacobi identity) that

x = [xi, [xp, [xi+1, [. . . , [xi+l−1, xi+l]]]]]]

53

54 CHAPTER 9. LIE ALGEBRAS GENERATED BY N EXTREMAL ELEMENTS

+[[xi, xp], [xi+1, [. . . , [xi+l−1, xi+l]]]]]
= [xi, [xp, [xi+1, [. . . , [xi+l−1, xi+l]]]]]], (9.5)

since xi and xp commute. We repeatedly use this observation, and if i ≤ p ≤ i+ l, we
can sooner or later apply rule 2, and the induction hypothesis gives the induction step.
Otherwise, we end up with

x = [xi, [xi+1, [. . . , [xi+l−1, [xi+l, xp]]]]]. (9.6)

Now if p = i + l + 1, the induction step is proved immediately. Otherwise, as we
excluded the case that p = i + l already, we have x = 0, and the induction step is
proved as well. So every element of L of length up to n can indeed be written as a
linear combination of monomials of the above form.

Suppose x ∈ L is a monomial of length n+ 1. Then, by the previous statement, we
may assume

x = [xp, [xi, [xi+1, [. . . , [xi+n−2, xi+n−1]]]]] (9.7)

for some p and some i, with 1 ≤ p, i ≤ n. If p = i or p = i + 1 extremality of xi and
xi+1, respectively, reduces x to a monomial of length at most n. Otherwise, xp and xi
commute, and we have, similar to the observation in Equation 9.5:

x = [xi, [xp, [xi+1, [. . . , [xi+n−2, xi+n−1]]]]]. (9.8)

Now we are either able to apply rule 2 after at most n − 1 applications of this step, or
we end up in the case where p = i+n−1 and x = 0. This proves that every element of
L of arbitrary length can be written as a linear combination of monomials of the above
form.

It remains to prove that one of the monomials of length n may be omitted. From
now on, we will no longer identify xn+i and xi. Note that

[x1, [x2, [x3, [. . . , [xn−1, xn]]]]]
= [x2, [x1, [x3, [. . . , [xn−1, xn]]]]]

+[[x1, x2], [x3, [. . . , [xn−1, xn]]]]. (9.9)

The first term is equal to −[x2, [x3, [. . . , [xn−1, [xn, x1]]]]], and for the second term we
have

[[x1, x2], [x3, [x4, [. . . , [xn−1, xn]]]]]
= [x3, [[x1, x2], [x4, [. . . , [xn−1, xn]]]]]

+[[[x1, x2], x3], [x4, [. . . , [xn−1, xn]]]]. (9.10)

Again, the first term is equal to −[x3, [x4, [. . . , [xn, [x1, x2]]]]], and the second term is
equal to

[[x1, [x2, x3]], [x4, [. . . , [xn−1, xn]]]]. (9.11)

Generalizing these observations shows:

[[x1, [x2, [. . . , [xj−1, xj]]]], [xj+1, [xj+2, [. . . , [xn−1, xn]]]]]
= [xj+1, [[x1, [x2, [. . . , [xj−1, xj]]]], [xj+2, [. . . , [xn−1, xn]]]]]

+[[[x1, [x2, [. . . , [xj−1, xj]]]], xj+1], [xj+2, [. . . , [xn−1, xn]]]]
= −[xj+1, [xj+2, [. . . , [xn, [x1, [x2, [. . . , [xj−1, xj]]]]]]]] (+)

+[[x1, [x2, [. . . , [xj−1, [xj , xj+1]]]]], [xj+2, [. . . , [xn−1, xn]]]]. (++)

(9.12)

(+) is valid because x1, . . . , xj commute with xj+2, . . . , xn, and (++) is valid because
xj+1 commutes with x1, . . . , xj−1.

9.1. AN 55

Applying this rule n − 3 times to [x1, [x2, [x3, [. . . , [xn−1, xn]]]]], taking the first of
the two terms along every time, leaves us with [[x1, [x2, [. . . , [xn−3, xn−2]]]], [xn−1, xn]].
For this bracketing, we have

[[x1, [x2, [. . . , [xn−3, xn−2]]]], [xn−1, xn]]
= [xn−1, [[x1, [x2, [. . . , [xn−3, xn−2]]]], xn]]

+[[[x1, [x2, [. . . , [xn−3, xn−2]]]], xn−1], xn]
= −[xn−1, [xn, [x1, [x2, [. . . , [xn−3, xn−2]]]]]]

−[xn, [x1, [x2, [x3, [. . . , [xn−2, xn−1]]]]]]. (9.13)

This shows that

[x1, [x2, [x3, [. . . , [xn−1, xn]]]]]
= −[x2, [x3, [x4, [. . . , [xn, x1]]]]]

−[x3, [x4, [x5, [. . . , [x1, x2]]]]]
...
−[xn, [x1, [x2, [. . . , [xn−2, xn−1]]]]]. (9.14)

So indeed, we may omit [xn, [x1, [x2, [. . . , [xn−2, xn−1]]]]] from our proposed basis.
This completes the proof of Theorem 9.1. �

We proved that a Lie algebra such as the degenerate D2.3 and E2.6 (see Section 6.5
and Section 8.2, respectively) in general has dimension n2 − 1. The attentive reader
may have noticed that this is exactly the dimension of An−1 (see Section 2.4). The
remainder of this section shows that indeed a Lie algebra as above is isomorphic to
An−1.

Theorem 9.2. Let L be a Lie algebra generated by n (where n ≥ 2) extremal elements
x1, . . . , xn, such that

[xi, xj] = 0 if |i− j| ≥ 2 and {i, j} 6= {1, n}, (9.15)

〈xi, xj〉 ∼= h if |i− j| = 1 or {i, j} = {1, n}, (9.16)

and
f(x1, [x2, . . . , [xn−1, xn]]) 6= 0. (9.17)

Then L is isomorphic to the simple Lie algebra An−1.

1

2n

1 2 2n-1 2n

1

2n

n-1 n
1

2

3

1

2

3
n

n-1

n-2

1

2

3
n

n-1

n-2

Figure 9.1: Extremal elements generating An−1

56 CHAPTER 9. LIE ALGEBRAS GENERATED BY N EXTREMAL ELEMENTS

Proof We denote the matrixM withMij = 1 and all other entries 0 by eij . Similarly,
we denote the vector v with vi = 1 and all other entries 0 by ei. As noted in [Hum72,
Section 1.1], An−1 is generated by the n× nmatricesM with tr(M) = 0, i.e:

• the n(n− 1) matrices eij , with 1 ≤ i, j,≤ n and i 6= j, and

• the n− 1 matrices ei,i − ei+1,i+1, with 1 ≤ i < n.

We take ϕ to be the morphism from L into sln, defined as follows:

xi 7→
{
ei,i+1 if 1 ≤ i < n
en,1 if i = n

[xi, xj] 7→ ϕ(xi)ϕ(xj)− ϕ(xj)ϕ(xi).

We will show how ϕ naturally induces a bijection between the above basis elements of
An−1 and the basis elements of L, defined in Theorem 9.1. We will distinguish three
cases: eij for i < j, eij for i > j, and ei,i − ei+1,i+1.

Case 1: eij , 1 ≤ i < j ≤ n. We claim

eij = ϕ([xi, [xi+1, [. . . , [xj−2, xj−1]]]]). (9.18)

We will prove this by induction on j − i. If j − i = 1 we are fine, since ei,i+1 = ϕ(xi).
Suppose we proved the claim for j − i ≤ k, for some k, and let i, j be such that j − i =
k+1. LetM = ei,i+1 andN = ei+1,j , and observe thatMN−NM = eij . Furthermore,
by the induction hypothesis M = ϕ(xi) and N = ϕ([xi+1, [. . . , [xj−2, xj−1]]]), so
eij = ϕ([xi, [xi+1, [. . . , [xj−2, xj−1]]]]) as required.

Case 2: eij , 1 ≤ j < i ≤ n. We claim

eij = ϕ([xi, [xi+1, [. . . , [xn, [x1, [x2, [. . . , [xj−2, xj−1]]]]]]]]). (9.19)

First, take i = n. If j = 1 then eij = en,1 = ϕ(xn). If j > 1 then takeM = en,j−1 and
N = ej−1,j and note thatMN −NM = en,j and

eij = ϕ([[xn, [. . . , [xj−3, xj−2]]], xj−1])
= ϕ([xn, [x1, [x2, [. . . , [xj−2, xj−1]]]]]), (9.20)

by the induction hypothesis and the fact that xj−1 commutes with xn and x1, . . . , xj−3.
This completes the proof for the case where j < i and i = n.

For the case where i < nwe apply induction on i, the case where i = n being proved
above. Now let i < n, and takeM = ei,i+1 and N = ei+1,j . NowMN −NM = eij , as
requested, and

eij = ϕ([xi, [xi+1, [xi+2, [. . . , [xn, [x1, [x2, [. . . , [xj−2, xj−1]]]]]]]]]), (9.21)

by the induction hypothesis. This completes the proof for the case eij , 1 ≤ j < i ≤ n.

Case 3: ei,i − ei+1,i+1, 1 ≤ i < n. We claim

ei,i − ei+1,i+1 = ϕ([xi, [xi+1, [. . . , [xn, [x1, [x2, [. . . , [xi−2, xi−1]]]]]]]]). (9.22)

We takeM = ei,i+1 and N = ei+1,i. Obviously,MN −NM = ei,i − ei+1,i+1. More-
over, we haveM = ϕ(xi) by definition, andN = ϕ([xi+1, [xi+2, [. . . , [xn, [x1, [x2, [. . . ,
[xi−2, xi−1]]]]]]]]) by case 2. Now ei,i − ei+1,i+1 is as required.

Conclusion: The above three cases show that each basis element of An−1 is the
ϕ of a unique monomial in the basis of L. Indeed, Case 1 proves this for 1

2n(n − 1)

9.2. CN 57

cases where the monomial is of length smaller than n, and does not contain xn. Case
2 proves this for 1

2n(n− 1) where the monomial is of length smaller than n, and does
contain xn. Lastly, Case 3 proves this for n − 1 cases where the monomial is of length
n. This indeed amounts to n2 − 1 cases in general.

Let i, j be such that i + 1 = j. Since 〈xi, xj〉 ∼= h, we have f(xi, xj) = 0. This
corresponds to the fact that

[ϕ(xi), [ϕ(xi), ϕ(xj)]] =
ei,i+1ei,i+1ei+1,i+2 − 2ei,i+1ei+1,i+2ei,i+1 + ei+1,i+2ei,i+1ei,i+1 = 0. (9.23)

(similarly for the case where i = n and j = 1). However, it cannot be the case that f is
identically zero, because that would mean Rad(L) = Rad(f) = L by Theorem 3.9. As
proved in Case 2 above, ϕ([x2, . . . , [xn−1, xn]]) = e21, so

ϕ([x1, [x1, [x2, . . . , [xn−1, xn]]]]) = e12e12e21 − 2e12e21e12 + e21e12e12
= −2e12e21e12 = −2e11e12 = −2e12,

(9.24)

so f(x1, [x2, . . . , [xn−1, xn]]) = −2 in general. This implies that by multiplying for
example ϕ(x1) with a suitable scalar, we have an isomorphism for arbitrary non-zero
f(x1, [x2, . . . , [xn−1, xn]]), as required. Most of the other evaluations of f are zero. For
example, if n ≥ 5, then

f(x1, [x2, [x3, x4]]) = −f(x2, [x1, [x3, x4]]) =
f(x2, [x3, [x4, x1]]) + f(x2, [x4, [x1, x3]]) = 0. (9.25)

This completes the proof of Theorem 9.2. �

9.2 Cn

Theorem 9.3. Let L be a Lie algebra generated by n (where n ≥ 2) extremal elements
x1, . . . , xn, such that

[xi, xj] = 0 if |i− j| ≥ 2, (9.26)

and
[xi, xj] 6= 0 if |i− j| = 1 (9.27)

(cf D1.2 and E1.3 in Sections 6.5 and 8.2, respectively). Then L is linearly generated by the
following 1

2n
2 + 1

2n monomials:

[xi, [xi+1, [. . . , [xi+l−1, xi+l]]]], 1 ≤ i ≤ n− l, 0 ≤ l ≤ n− 1. (9.28)

Proof This proof is along the lines of the proof of Theorem 9.1, and depends on Iden-
tity 9.5. We again prove by induction that every monomial can be written as a linear
combination of the proposed basis elements. The case where l = 0 is trivial, so sup-
pose that we proved the statement for monomials of length up to l + 1, and let x ∈ L
be a monomial of length l + 2. By the induction hypothesis, we know that

x = [xp, [xi, [xi+1, [. . . , [xi+l−1, xi+l]]]]] (9.29)

for some p and some i, with 1 ≤ p, i ≤ n. If p = i− 1, we proved the induction step. If
p = i we apply extremality of xi, and the induction hypothesis gives the induction step.
If p = i+ 1 we apply (P2), and the induction hypothesis gives the induction step.

In all other cases, we apply the observation in Equation 9.5 until either:

1. We find x = 0 (if p < i− 1 or p > i+ l + 1), and we are done immediately, or

58 CHAPTER 9. LIE ALGEBRAS GENERATED BY N EXTREMAL ELEMENTS

2. We are able to apply rule 2 (if i + 2 ≤ p ≤ i + l), and we apply the induction
hypothesis to show the induction step, or

3. We find
x = −[xi, [xi+1, [. . . , [xi+l, xi+l+1]]]], (9.30)

and we see the induction step as well.

Reasoning as in the proof of Theorem 9.1 shows that all monomials of length more
than n can be written as linear combination of the proposed basis elements.

This indeed amounts to 1
2n

2 + 1
2nmonomials:

n−1∑
l=0

n− l = n2 −
n−1∑
l=0

l = n2 −
n−1∑
l=1

l = n2 − 1
2
(n− 1)n =

1
2
n2 +

1
2
n. (9.31)

This completes the proof of Theorem 9.3. �

We now arrive at the central theorem of this section.

Theorem 9.4. Let L be a Lie algebra over the field F generated by 2l (where l ≥ 1) extremal
elements x1, . . . , x2l, such that

[xi, xj] = 0 if |i− j| ≥ 2, (9.32)

and
〈xi, xj〉 ∼= sl2 if |i− j| = 1. (9.33)

Then L is isomorphic to the simple Lie algebra Cl.

Before proceeding to the proof of this theorem, we introduce a few notions and we
prove some lemmas. As defined in Section 2.4, the simple Lie algebra Cl is sp(V),
where V is a vectorspace of dimension 2l. The Lie algebra sp(V) was defined as the
algebra of all endomorphisms x of V satisfying g(x(v), w) = −g(v, x(w)), where g is
the skew-symmetric bilinear function defined by the matrix G:

G =
(

0 In
−In 0

)
. (9.34)

Furthermore, we define the map E from V into End(V) as follows:

Ea : V → V, x 7→ g(a, x)a, where a ∈ V. (9.35)

For all endomorphisms x, y of V we define [x, y] = xy− yx. Now we let a ∈ V and
derive the following properties of Ea:

P1. Ea ∈ sp(V). Indeed, for x, y ∈ V :

g(Ea(x), y) + g(x,Ea(y)) = g(g(a, x)a, y) + g(x, g(a, y)a)
= g(a, x)g(a, y) + g(a, y)g(x, a)
= 0. (9.36)

1

2n

1 2 2n-1 2n

Figure 9.2: Extremal elements generating Cn

9.2. CN 59

P2. E2
a = 0. Indeed, for x ∈ V :

EaEa(x) = Eag(a, x)a
= g(a, x)g(a, a)a
= 0. (9.37)

P3. [Ea, [Ea, B]] = αB where α ∈ F. Indeed, for B ∈ End(V) and x ∈ V , using P2:

[Ea, [Ea, B]](x) = −2EaBEa(x)
= −2EaBg(a, x)a
= −2g(a, x)Ea(Ba)
= −2g(a, x)g(a,Ba)a
= −2g(a,Ba)Ea(x). (9.38)

P4. Ea+b(x)− Ea(x)− Eb(x) = g(a, x)b+ g(b, x)a. Indeed, let b, x ∈ V :

Ea+b(x) = g(a+ b, x)(a+ b)
= g(a, x)a+ g(a, x)b+ g(b, x)a+ g(b, x)b
= Ea(x) + Eb(x) + g(b, x)a+ g(b, x)b. (9.39)

P5. [Ea, Eb] = g(a, b)(Ea+b − Ea − Eb). Indeed, let b, x ∈ V , and use P4:

[Ea, Eb](x) = EaEb(x)− EbEa(x)
= g(b, x)g(a, b)a− g(a, x)g(b, a)b
= g(a, b)(g(b, x)a+ g(a, x)b)
= g(a, b)(Ea+b(x)− Ea(x)− Eb(x)). (9.40)

From this observation it follows that [Ea, Eb] ∈ sp(V) as well. Note that [Ea, Eb]
is in general not extremal.

We now give a lemma on the combination of various Ea.

Lemma 9.5. Let a1, . . . , an ∈ V and let b1, . . . , bk ∈ V be such that for every l we have
bl = al1 + . . .+ alt for some t ∈ N. Moreover, suppose the following two equations hold:

µ1a1 + . . .+ µkan ⇒ µ1 = . . . = µn = 0, (9.41)

λ1Ea1 + . . .+λnEan +λn+1Eb1 + . . .+λn+kEbk
= 0 ⇒ λ1 = . . . = λn+k = 0, (9.42)

i.e. the ai are linearly independent, and the Eai and Ebi are all linearly independent.
Then, if we let b ∈ V be such that b 6= 0, either b = ai + aj or b = ai + bj , and

b 6∈ {a1, . . . , an, b1, . . . , bk}, we have

λ1Ea1 + . . .+ λn+kEbk
+ λEb = 0 ⇒ λ1 = . . . = λn+k = λ = 0, (9.43)

i.e. Eb is linearly independent from all previous Eai and Ebj .

Proof Without loss of generality, we assume b = a1 + . . .+at. Suppose to the contrary
that our lemma is false, so there exist λ1, . . . , λn+k, λ not all equal to zero, such that
λ1Ea1 + . . .+ λn+kEbk

+ λEb = 0, or equivalently:

λ1Ea1(x) + . . .+ λn+kEbk
(x) + λEb(x) = 0 for all x ∈ V. (9.44)

If λ = 0 this is a contradiction with Equation 9.42, so λ 6= 0.
We rearrange the terms of the summation, and find, for all x ∈ V :

0 = a1(λ1g(a1, x) + g(Ta1 , x) + λg(a1 + . . .+ at, x))

60 CHAPTER 9. LIE ALGEBRAS GENERATED BY N EXTREMAL ELEMENTS

...
+at(λtg(at, x) + g(Tat

, x) + λg(a1 + . . .+ at, x))
+at+1g(Tat+1 , x)
...
+ang(Tan

, x), (9.45)

where Tal
is some combination of terms of the form λjg(al1 + . . . + als , x) for some

s ∈ N, depending on the values of b1, . . . , bk.
By Assumption 9.41, we now find

0 = λ1g(a1, x) + g(Ta1 , x) + λg(a1 + . . .+ at, x), and
0 = λ2g(a2, x) + g(Ta2 , x) + λg(a1 + . . .+ at, x), for all x ∈ V.

Because λ 6= 0 and there exists an x ∈ V such that g(a1 + . . .+at, x) 6= 0, and because
we assumed that b 6∈ {a1, . . . , an, b1, . . . , bk}, we know that λ1 6= 0, or at least one of the
λi hidden in Ta1 is non-zero. Moreover, the above implies that λ1g(a1, x)+g(Ta1 , x) =
λ2g(a2, x) + f(Ta2 , x), or equivalently

g(λ1a1 + Ta1 − λ2a2 − Ta2 , x) = 0 for all x ∈ V. (9.46)

This shows λ1a1 +Ta1−λ2a2−Ta2 = 0, but not all λi are zero, contradicting Assump-
tion 9.41. So λ = 0, and we proved Lemma 9.5 �

A direct consequence of this lemma is the following:

Lemma 9.6. Let a1, . . . , an ∈ V and let b1, . . . , bk ∈ V be such that for every l we have
bl = al1 + . . .+ alt for some t ∈ N. Moreover, suppose the following two equations hold:

µ1a1 + . . .+ µnan ⇒ µ1 = . . . = µn = 0, (9.47)

λ1Ea1 + . . .+λnEan
+λn+1Eb1 + . . .+λn+kEbk

= 0 ⇒ λ1 = . . . = λn+k = 0, (9.48)

i.e. the ai are linearly independent, and the Eai and Ebi are all linearly independent.
Then if we letB = [Eai

, Ebj
], such that g(ai, bj) 6= 0 and ai+bj 6∈ {a1, . . . , an, b1, . . . , bk},

we have

λ1Ea1 + . . .+ λn+kEbk
+ λEai+bj = 0 ⇒ λ1 = . . . = λn+k = λ = 0, and (9.49)

λ1Ea1 + . . .+ λn+kEbk
+ λB = 0 ⇒ λ1 = . . . = λn+k = λ = 0. (9.50)

Proof We assume, without loss of generality, that B = [Ea1 , Eb1]. Lemma 9.5 imme-
diately gives us

λ1Ea1 + . . .+ λn+kEbk
+ λEa1+b1 = 0 ⇒ λ1 = . . . = λn+k = λ = 0, (9.51)

proving the first claim. We set γ = g(a1, b1) and apply Property P5 to see that B =
γ(Ea1+b1 − Ea1 − Eb1), which gives

0 = λ1Ea1 + . . .+ λn+kEbk
+ λB

= (λ1 − λγ)Ea1 + . . .+ λnEan + (λn+1 − λγ)Eb1 + . . .+ λn+kEbk
+ λγEa1+b1 .

Applying the first claim now shows that λ1 = . . . = λn+k = λ = 0, proving the second
claim as well.

This completes the proof of Lemma 9.6 �

Now these two lemmas are enough to prove Theorem 9.4.

9.3. AN REVISITED 61

1

2n

1 2 2n-1 2n

1

2n

n-1 n
1

2

3

1

2

3
n

n-1

n-2

1

2

3
n

n-1

n-2

Figure 9.3: Extremal elements generating An−1

Proof of Theorem 9.4 Observe the basis elements of L, as proved in Theorem 9.3. We
let V be a 2l-dimensional vector space over F, and let ei denote the vector v ∈ V with
vi = 1 and all other entries 0. We let ψ : L → V map the basis elements of L to
elements of V as follows:

• ψ(x2i−1) = ei for 1 ≤ i ≤ l,

• ψ(x2i) = ei+l + ei+l+1 if 1 ≤ i < l, and

• ψ(x2l) = e2l.

For example, if l = 2, then x1 → (1, 0, 0, 0), x2 → (0, 0, 1, 1), x3 → (0, 1, 0, 0), and
x4 → (0, 0, 0, 1). It is immediately clear that the ψ(xi) are linearly independent, i.e.
they fulfill the first assumption of Lemma 9.6.

We now define the map ϕ : L→ sp(V) :

xi 7→ Eψ(xi)

[xi, xj] 7→ [ϕ(xi), ϕ(xj)]. (9.52)

To prove that ϕ maps basis elements of L to basis elements of sp(V), we first let
B = {ϕ(xi) | 1 ≤ i ≤ 2l}, then add the basis monomials of L of length 2 to B, then
we add the basis monomials of length 3, etc. It is straightforward to see that the basis
elements of L from Theorem 9.3 are such that they satisfy the demands on ai and
bj in Lemma 9.6 during each step of this procedure. Indeed, for [ϕ(xi), ϕ(xi+1)] (a
basis monomial of length 2) we have g(ψ(xi), ψ(xi+1)) 6= 0, and ψ(xi) + ψ(xi+1) is
different from all ψ(xi). The reasoning for longer basis monomials is exactly the same.
By induction, using Lemma 9.6 for the induction step, we find that the above procedure
gives a set of linearly independent elements of sp(V). Moreover, the dimension of L is
1
2 (2l)2 + 1

2 (2l) = 2l2 + l, which is exactly the dimension of sp(V).

Furthermore, using Property P3, we have

[Ea, [Ea, Eb]](v) = −2g(a,Eba)Ea(v) = 2g(a, b)2Ea(v). (9.53)

Since we chose ψ(xi) such that g(ψ(xi), ψ(xj)) 6= 0 if and only if |i − j| = 1, we
have that f(xi, xj) 6= 0 translates to [Eψ(xi), [Eψ(xi), Eψ(xj)]] 6= 0, as required. This
observation and the above reasoning show that ϕ faithfully maps basis elements of L to
basis elements of sp(V), showing that L andCl are indeed isomorphic. This completes
the proof of Theorem 9.4. �

9.3 An Revisited

In this section we again consider a picture describing Lie algebras generated by n ex-
tremal elements, and prove that one of its instances is isomorphic to An−1. To do that,
we use the rewrite rules introduced in Section 8.3.

62 CHAPTER 9. LIE ALGEBRAS GENERATED BY N EXTREMAL ELEMENTS

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

Figure 9.4: First rewrite move

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

Figure 9.5: Middle rewrite moves

Theorem 9.7. Let L be a Lie algebra over the field F generated by l (where l ≥ 4) extremal
elements x1, . . . , xl, such that

[x1, x2], [x1, x3], [x2, x3] 6= 0,

[xi, xi+1] 6= 0, where i ∈ {3, . . . , l − 1},

and
[xi, xj] = 0 if |i− j| ≥ 2 and {i, j} 6⊆ {1, 2, 3},

see Figure 9.3. Then, for a certain evaluation of f , L is isomorphic to the simple Lie algebra
Al−1.

Proof We will prove this theorem by repeatedly applying the replacement of y by yx,
as introduced in Section 8.3. For the first move (see Figure 9.4), we set x = x3, y = x1,
and z = x4, and we are in Case C. Since f(x1, x3) 6= 0 and f(x3, x4) 6= 0 (as 〈x1, x3〉 ∼=
sl2 and 〈x3, x4〉 ∼= sl2), we pick s non-zero and have an isomorphism between the
original Lie algebra and the one depicted on the right hand side of figure 9.4. Indeed,
now 〈xx3

1 , x4〉 ∼= sl2.
Note that 〈x1, x2〉 ∼= sl2 and 〈x2, x3〉 ∼= sl2 (Case D above), so we should pick s

such that 〈xx3
1 , x2〉 is still isomorphic to sl2. This means that we should pick s such

that s 6= 0 and f(x1, x2) + sf(x3, [x1, x2]) + 1
2s

2f(x1, x3)f(x2, x3) 6= 0 (cf Case C and
D above). This is not really a problem, since f(x1, x2), f(x1, x3), f(x2, x3) 6= 0.

We proceed with the right hand side of Figure 9.4, i.e. the left hand side of Figure
9.5. Now we first set x = x4, y = x1, and z = x3, and see that we are in Case D. We
pick s 6= 0 such that α = 0 (which is possible, as proved above), and see that 〈xx4

1 , x3〉
disappears into the radical of the Lie algebra. Moreover, setting z = x5, we see that
〈xx4

1 , x5〉 ∼= sl2 since we picked s such that s 6= 0, and f(x1, x4) 6= 0 (by the previous
step) and f(x4, x5) 6= 0 (by definition).

We apply this step l − 4 times and end up in the left hand side of Figure 9.6. In
this situation we pick x = xn, y = x1, and z = xn−1, and we see that we are in Case

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

x 1

x 2

x 3 x n-1 x nx 4 x 5

Figure 9.6: Last rewrite move

9.4. THREE CONJECTURES 63

D again. We pick s 6= 0 such that α = 0 (which is possible), and see that 〈xxn
1 , xn−1〉

disappears into the radical of the Lie algebra.

Now the right hand side of Figure 9.6 is isomorphic to An−1 by Theorem 9.2,
proving Theorem 9.7. �

9.4 Three Conjectures

In this Section we present three theorems we believe to be true, but could not prove.
The first one is a refinement of Theorem 9.7, and the other two are theorems similar
to 9.2 and 9.4.

Conjecture 9.8. Let L be a Lie algebra over the field F generated by l (where l ≥ 4) extremal
elements x1, . . . , xl, such that

〈x1, x2〉, 〈x1, x3〉, 〈x2, x3〉 ∼= sl2,

〈xi, xi+1〉 ∼= sl2, where i ∈ {3, . . . , l − 1},

and
[xi, xj] = 0 if |i− j| ≥ 2 and {i, j} 6⊆ {1, 2, 3},

see Figure 9.3. Then L is isomorphic to the simple Lie algebra Al−1.

We verified this conjecture using Algorithm II for l up to 6, and using only the first
step of Algorithm II (which means we only verified the dimension) for l up to 10.

Below we state two conjectures on the generation of Bn and Dn by extremal ele-
ments.

Conjecture 9.9. Let L be a Lie algebra over the field F generated by l (where l ≥ 5) extremal
elements x1, . . . , xl, such that

〈x1, x2〉, 〈x1, x3〉, 〈x2, x3〉,∼= sl2,

〈xi, xi+1〉 ∼= sl2, where i ∈ {3, . . . , l − 3},

〈xl−2, xl−1〉, 〈xl−2, xl〉 ∼= sl2,

and
[xi, xj] = 0 if |i− j| ≥ 2 and {i, j} 6⊆ {1, 2, 3, l − 2, l − 1, l},

[xl−1, xl] = 0,

see Figure 9.7. Then L is isomorphic to the simple Lie algebra Bl−1.

1

2n

1 2 2n-1 2n

1

2n

n-1 n
1

2

3

1

2

3
n

n-1

n-2

1

2

3
n

n-1

n-2
Figure 9.7: Extremal elements generating Bn−1

64 CHAPTER 9. LIE ALGEBRAS GENERATED BY N EXTREMAL ELEMENTS

Conjecture 9.10. Let L be a Lie algebra over the field F generated by l (where l ≥ 5)
extremal elements x1, . . . , xl, such that

〈x1, x2〉, 〈x1, x3〉, 〈x2, x3〉,∼= sl2,

〈xi, xi+1〉 ∼= sl2, where i ∈ {3, . . . , l − 3},

〈xl−2, xl−1〉, 〈xl−2, xl〉, 〈xl−1, xl〉 ∼= sl2,

and
[xi, xj] = 0 if |i− j| ≥ 2 and {i, j} 6⊆ {1, 2, 3, l − 2, l − 1, l},

see Figure 9.8. Then L is isomorphic to the simple Lie algebra Dl.

We verified these two conjectures for l up to 6 using Algorithm II. Moreover, for
l up to 10, we verified that the dimensions of the proposed isomorphic Lie algebras
match.

1

2n

1 2 2n-1 2n

1

2n

n-1 n
1

2

3

1

2

3
n

n-1

n-2

1

2

3
n

n-1

n-2

Figure 9.8: Extremal elements generating Dn

Chapter 10

Conclusion and
Recommendations

In this Master’s thesis we studied Lie algebras generated by extremal elements, mostly
using and carrying on with the work by Cohen et al. [CSUW01]. The most impor-
tant results include the observation that a Lie algebra generated by four elements is
isomorphic to D4 in general (Section 6.3), the detailed analysis of degenerate cases
(Sections 6.5 and 8.2), and the observation that no semi-simple 537-dimensional Lie
algebra generated by five extremal elements exists. The latter observation shows that
the five generator case really differs from the smaller cases, and makes us suspect that
the two, three, and four generator case are special in the fact that a semi-simple Lie
algebra of maximal dimension does occur.

The results in Chapter 9 support the findings in [CSUW01] and show how two of
the families of classical Lie algebras can be generated by extremal elements. Moreover,
in Section 9.4 we give similar conjectures on the other two families of classical Lie
algebras. As for the exceptional Lie algebras: G2 was discovered in Section 6.3, and F4

in Section 8.2. We suspect that E6, E7, and E8 were found in Section 8.2 as well, but
that remains to be proved.

Two things suitable for future research come to mind. First of all, it would be worth
finding out if (and how) extremal elements can be applied in physics in general and,
more particular, in differential geometry. This could be a nice project for someone
acquainted with both physics and algebraic geometry.

Secondly, from a mathematical point of view, it would be very satisfying to find a
proof for Conjectures 9.9 and 9.10 and the occurrence of E6, E7, and E8 in Section
8.2. It would then be known how to generate every simple Lie algebra by extremal
elements. However, I suspect some work has to be done before these conjectures are
proved.

Of course, many more possibilities for future research exist. One could, for ex-
ample, analyze Lie algebras generated by six extremal elements (whose dimension is
suspected to be more than 20.000), or focus on Lie algebras over fields of non-zero
characteristic. However, the series 1, 3, 8, 28, 537, . . . remains the most intriguing
problem to me. Maybe this is where the key to all there is to know about Lie algebras
generated by extremal elements is hidden?

65

66 CHAPTER 10. CONCLUSION AND RECOMMENDATIONS

Bibliography

[Ben77] G. Benkart. Inner ideals of lie algebras. Transations of the American Mathe-
matical Society, 232:61–81, 1977.

[BK90] G.G.A. Bäuerle and E.A. de Kerf. Finite and Infinite Dimensional Lie Alge-
bras and Applications in Physics, volume 1 of Studies in Mathematical Physics.
Elsevier Science Publishers, 1990.

[CG05] A.M. Cohen and D.A.H. Gijsbers. GBNP 0.9.2 (Non-commutative Gröbner
bases), 2005. http://www.win.tue.nl/~amc/pub/grobner/.

[Che89] V. I. Chernousov. On the Hasse principle for groups of type e8. Dokl. Akad.
Nauk SSSR, 306, 25:1059–1063, 1989. Translation in Soviet Math. Dokl.
39, 592–596, 1989.

[CSUW01] A. M. Cohen, A. Steinbach, R. Ushirobira, and D. Wales. Lie algebras gen-
erated by extremal elements. J. Algebra, 236(1):122–154, 2001.

[Dra02] Jan Draisma. Lie Algebras of Vector Fields. PhD thesis, Technische Univer-
siteit Eindhoven, 2002.

[Hal03] Brian C. Hall. Lie Groups, Lie Algebras, and Representations, An Elementary
Introduction. Graduate Texts in Mathematics. Springer-Verlag New York,
2003.

[Hum72] J. E. Humphreys. Introduction to Lie Algebras and Representation Theory.
Graduate Texts in Methematics. Springer-Verlag New York, 1972.

[Jac62] N. Jacobson. Lie Algebras, volume 10 of Interscience Tracts in Pure and Ap-
plied Mathematics. Interscience Publishers, 1962.

[Kno04] Jan Willem Knopper. GBNP and vector enumeration. 2004.

[Kos90] A.I. Kostrikin. Around Burnside. Springer-Verlag, 1990.

[MQ] Quotations about mathematics and education.
http://www.pen.k12.va.us/Div/Winchester/jhhs/math/quotes.html.

[PS97] A. Premet and H Strade. Simple Lie algebras of small characteristic. I.
Sandwich elements. J. Algebra, 189:419–480, 1997.

[S+95] Martin Schönert et al. GAP – Groups, Algorithms, and Program-
ming. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische
Hochschule, Aachen, Germany, fifth edition, 1995.

[Ser87] J.P. Serre. Complex Semisimple Lie Algebras. Springer-Verlag New York,
1987.

67

68 BIBLIOGRAPHY

[SW86] D.H. Sattinger and O.L. Weaver. Lie Groups and Algebras With Applications
to Physics, Geometry, and Mechanics, volume 61 of Applied Mathematical Sci-
ences. Springer-Verlag New York, 1986.

[Var84] V. S. Varadarajan. Lie Groups, Lie Algebras, and Their Representations, volume
102 of Graduate Texts in Mathematics. Springer-Verlag New York, 1984.

[ZK90] E. I. Zel′manov and A. I. Kostrikin. A theorem on sandwich algebras. Trudy
Mat. Inst. Steklov., 183:106–111, 225, 1990. Translated in Proc. Steklov Inst.
Math. 1991, no. 4, 121–126, Galois theory, rings, algebraic groups and their
applications (Russian).

Index

abelian, 10
ad, 8
ad-nilpotent, 15
adjoint representation, 9
Ado’s theorem, 9
Algorithm I, 41
Algorithm II, 42
Algorithm III, 43
algorithms, 41
automorphism, 8

center, 10
classical Lie algebras, 11

degenerate, 39, 44, 46
derivation, 8
derived algebra, 10

exceptional Lie algebras, 11
exponential, 17
exponential, 50
extremal element, 15

general linear algebra, 8
gl, 8

h, 25
Heisenberg, 25
homomorphism, 8

ideal, 10
ideal

nilpotent, 12
solvable, 12

isomorphism, 8

Jacobi, 7

lie algebra, 7
Lie algebra

classical, 11
exceptional, 11
linear, 9
semi-simple, 12
simple, 10

linear lie algebra, 9

monomial, 9
monomial

reducible, 9

nilpotency, 12
nilpotent, 37
nilradical, 12

o, 11
orthogonal algebra, 11

primitive evaluations of f , 33
primitives, 33, 42

radical, 12
radical, 19

nilpotent, 12
SanRad, 20
solvable, 12

radical of f , 19
reducible, 9
representation, 9
representation

adjoint, 9

sandwich, 20
SanRad, 20
semi-simple, 22
semi-simple lie algebra, 12
simple lie algebra, 10
sl, 10
sl2, 25
solvability, 11
sp, 11
special linear algebra, 10
structure constants, 26, 29, 33
symplectic algebra, 11

universal enveloping algebra, 13

69

70 INDEX

Appendix A

Simple Lie Algebras

An overview of all simple Lie algebras of dimension at most 1000:

Lie Algebra Dim #
A1 = B1 = C1 3 2
A2 8 3
B2 = C2 10 4
G2 14 4
A3 15 4
B3 21 4
C3 21 6
A4 24 5
D4 28 4
A5 35 6
B4 36 5
C4 36 8
D5 45 5
A6 48 7
F4 52 5
B5 55 6
C5 55 10
A7 63 8
D6 66 6
B6 78 7
C6 78 12
E6 78 5
A8 80 9
D7 91 7
A9 99 10
B7 105 8
C7 105 14
A10 120 11
D8 120 8
E7 133 5
B8 136 9
C8 136 16

Lie Algebra Dim #
A11 143 12
D9 153 9
A12 168 13
B9 171 10
C9 171 18
D10 190 10
A13 195 14
B10 210 11
C10 210 20
A14 224 15
D11 231 11
E8 248 5
B11 253 12
C11 253 22
A15 255 16
D12 276 12
A16 288 17
B12 300 13
C12 300 24
A17 323 18
D13 325 13
B13 351 14
C13 351 26
A18 360 19
D14 378 14
A19 399 20
B14 406 15
C14 406 28
D15 435 15
A20 440 21
B15 465 16
C15 465 30

Lie Algebra Dim #
A21 483 22
D16 496 16
A22 528 23
B16 528 17
C16 528 32
D17 561 17
A23 575 24
B17 595 18
C17 595 34
A24 624 25
D18 630 18
B18 666 19
C18 666 36
A25 675 26
D19 703 19
A26 728 27
B19 741 20
C19 741 38
D20 780 20
A27 783 28
B20 820 21
C20 820 40
A28 840 29
D21 861 21
A29 899 30
B21 903 22
C21 903 42
D22 946 22
A30 960 31
B22 990 23
C22 990 44

‘Dim’ denotes the dimension of the Lie algebra (see Section 2.4), ‘#’ denotes the mini-
mumnumber of extremal elements required to generate this Lie algebra (see [CSUW01,
Section 8]).

71

72 APPENDIX A. SIMPLE LIE ALGEBRAS

Appendix B

Multiplication Tables

x y z
x 0 z f(x, y)x
y −z 0 −f(y, x)y
z −f(x, y)x f(y, x)y 0

Table B.1: Multiplication Table for the 2 generator case

x y z
x 0 z f(x, y)x
y −z 0 −f(x, y)y
z −f(x, y)x f(x, y)y 0

Table B.2: Simplified Table for the 2 generator case

x y z
x 0 z 0
y −z 0 0
z 0 0 0

Table B.3: Simplified Table for the 2 generator case where f = 0

73

74 APPENDIX B. MULTIPLICATION TABLES

x
y

z
[x
,y

]
[x
,z

]
[y
,z

]
x

0
[x
,y

]
[x
,z

]
f
(x
,y

)x
f
(x
,z

)x
[x
,[
y
,z

]]
y

0
[y
,z

]
−
f
(x
,y

)y
[y
,[
x
,z

]]
f
(y
,z

)y
z

0
−

[x
,[
y
,z

]]
+

[y
,[
x
,z

]]
−
f
(x
,z

)z
−
f
(y
,z

)z
[x
,y

]
0

1 2
f
(x
,[
y
,z

])
x

+
1 2
f
(x
,z

)[
x
,y

]
1 2
f
(x
,[
y
,z

])
y

+
1 2
f
(y
,z

)[
x
,y

]
−

1 2
f
(x
,y

)[
x
,z

]
+

1 2
f
(x
,y

)[
y
,z

]
[x
,z

]
0

+
1 2
f
(x
,[
y
,z

])
z
−

1 2
f
(y
,z

)[
x
,z

]
+

1 2
f
(x
,z

)[
y
,z

]
[y
,z

]
0

[x
,[
y
,z

]]
[y
,[
x
,z

]]

[x
,[
y
,z

]]
[y
,[
x
,z

]]
x

f
(x
,[
y
,z

])
x

1 2
f
(x
,[
y
,z

])
x
−

1 2
f
(x
,z

)[
x
,y

]
−

1 2
f
(x
,y

)[
x
,z

]
y

−
1 2
f
(x
,[
y
,z

])
y

+
1 2
f
(y
,z

)[
x
,y

]
−
f
(x
,[
y
,z

])
y

−
1 2
f
(x
,y

)[
y
,z

]
z

−
1 2
f
(x
,[
y
,z

])
z
−

1 2
f
(y
,z

)[
x
,z

]
1 2
f
(x
,[
y
,z

])
z
−

1 2
f
(x
,z

)[
y
,z

]
−

1 2
f
(x
,z

)[
y
,z

]
−

1 2
f
(y
,z

)[
x
,z

]
[x
,y

]
1 2
f
(y
,z

)f
(x
,y

)x
+

1 2
f
(x
,[
y
,z

])
[x
,y

]
−

1 2
f
(x
,z

)f
(x
,y

)y
−

1 2
f
(x
,[
y
,z

])
[x
,y

]
−

1 2
f
(x
,y

)[
x
,[
y
,z

]]
+

1 2
f
(x
,y

)[
y
,[
x
,z

]]
[x
,z

]
−

1 2
f
(y
,z

)f
(x
,z

)x
+

1 2
f
(x
,[
y
,z

])
[x
,z

]
f
(x
,[
y
,z

])
[x
,z

]−
1 2
f
(x
,z

)
·(
f
(x
,y

)z
+
f
(y
,z

)x
)

−
1 2
f
(x
,z

)[
x
,[
y
,z

]]
−

1 2
f
(x
,z

)
·(

2[
x
,[
y
,z

]]
−

[y
,[
x
,z

]])
[y
,z

]
−
f
(x
,[
y
,z

])
[y
,z

]−
1 2
f
(y
,z

)
·(
f
(x
,y

)z
+
f
(x
,z

)y
)

−
1 2
f
(x
,z

)f
(y
,z

)y
−

1 2
f
(x
,[
y
,z

])
[y
,z

]
−

1 2
f
(y
,z

)
·(

2[
y
,[
x
,z

]]
−

[x
,[
y
,z

]])
−

1 2
f
(y
,z

)[
y
,[
x
,z

]]
[x
,[
y
,z

]]
0

−
1 4
(f

(y
,z

)f
(x
,[
y
,z

])
x

+
f
(x
,[
y
,z

])
f
(x
,z

)y
)

−
1 4
f
(x
,[
y
,z

])
f
(x
,y

)z
−

1 2
f
(y
,z

)f
(x
,z

)[
x
,y

]
+

1 2
(f

(y
,z

)f
(x
,y

)[
x
,z

]−
1 2
f
(x
,z

)f
(x
,y

)[
y
,z

])
[y
,[
x
,z

]]
0

Ta
bl
e
B
.4
:S

im
pl
ifi
ed

M
u
lt
ip
lic
at
io
n
Ta
bl
e
fo
r
th
e

3
ge
n
er
at
or

ca
se

Appendix C

GAP Code

C.1 Three Generator Case

fxy :=13;; fxz :=17;; fyz :=19;; fxyz :=23;;

T := EmptySCTable(8, 0, "antisymmetric");

SetEntrySCTable(T, 1,2, [1,4]);

SetEntrySCTable(T, 1,3, [1,5]);

5 SetEntrySCTable(T, 1,4, [fxy ,1]);

SetEntrySCTable(T, 1,5, [fxz ,1]);

SetEntrySCTable(T, 1,6, [1,7]);

SetEntrySCTable(T, 1,7, [fxyz ,1]);

SetEntrySCTable(T, 1,8, [(1/2)* fxyz ,1, - (1/2)* fxz ,4, - (1/2)* fxy ,5]);

10 SetEntrySCTable(T, 2,3, [1,6]);

SetEntrySCTable(T, 2,4, [-fxy ,2]);

SetEntrySCTable(T, 2,5, [1,8]);

SetEntrySCTable(T, 2,6, [fyz ,2]);

SetEntrySCTable(T, 2,7, [- (1/2)* fxyz ,2, (1/2)* fyz ,4, - (1/2)*fxy ,6]);

15 SetEntrySCTable(T, 2,8, [-fxyz ,2]);

SetEntrySCTable(T, 3,4, [-1,7,1,8]);

SetEntrySCTable(T, 3,5, [-fxz ,3]);

SetEntrySCTable(T, 3,6, [-fyz ,3]);

SetEntrySCTable(T, 3,7, [-(1/2)* fxyz ,3, - (1/2)* fyz ,5, - (1/2)* fxz ,6]);

20 SetEntrySCTable(T, 3,8, [(1/2)* fxyz ,3, - (1/2)* fxz ,6, - (1/2)* fyz ,5]);

SetEntrySCTable(T, 4,5, [(1/2)* fxyz ,1, (1/2)* fxz ,4, - (1/2)* fxy ,5]);

SetEntrySCTable(T, 4,6, [(1/2)* fxyz ,2, (1/2)* fyz ,4, (1/2)* fxy ,6]);

SetEntrySCTable(T, 4,7, [(1/2)* fyz* fxy ,1, (1/2)* fxyz ,4, - (1/2)* fxy ,7]);

SetEntrySCTable(T, 4,8, [- (1/2)* fxz* fxy ,2, -(1/2)* fxyz ,4, + (1/2)* fxy ,8]);

25 SetEntrySCTable(T, 5,6, [(1/2)* fxyz ,3, - (1/2)* fyz ,5, + (1/2)* fxz ,6]);

SetEntrySCTable(T, 5,7, [- (1/2)* fyz*fxz ,1, (1/2)* fxyz ,5, - (1/2)* fxz ,7]);

SetEntrySCTable(T, 5,8, [fxyz ,5 , -(1/2)* fxz*fxy ,3 , -(1/2)* fxz*fyz ,1 , -(1/2)* fxz*2,

7,-(1/2)*fxz*(-1),8]);

SetEntrySCTable(T, 6,7, [-fxyz ,6 , -(1/2)* fyz*fxy ,3 , -(1/2)* fyz*fxz ,2 , -(1/2)* fyz*2,

30 8,-(1/2)*fyz*(-1),7]);

SetEntrySCTable(T, 6,8, [-(1/2)* fxz*fyz ,2 , -(1/2)*fxyz ,6 , -(1/2)*fyz ,8]);

SetEntrySCTable(T, 7,8, [-(1/4)* fyz*fxyz ,1, -(1/4)* fxyz*fxz ,2, -(1/4)* fxyz*fxy ,3,

- (1/2)* fyz* fxz ,4, + (1/2)* (fyz*fxy),5, - (1/2)* fxz*fxy ,6]);

TestJacobi(T);

35 L := LieAlgebraByStructureConstants(Rationals , T);

SemiSimpleType(L);

75

76 APPENDIX C. GAP CODE

C.2 Algorithm I

RequirePackage("gbnp");

###

Elt(i)

5 ##

Returns the monomial i in GBNP format

##

elt := function(i)

return [[[i]] ,[1]];

10 end;

###

bprod(a,b)

##

15 ## Returns ab-ba

##

bprod := function(a,b)

return AddNP(MulNP(a,b),MulNP(b,a),1,-1);

end;

20

###

rbprod(a,b, basis)

##

Returns ab-ba, cleaned and reduced wrt to the basis.

25 ##

rbprod := function(a,b,basis)

return CleanNP(StrongNormalFormNP(bprod(a,b),basis));

end;

30 ###

DivNP(pol , B)

##

Returns [[Q], r], where:

* Q is a list of size Size(lst)

35 ## * sum Q[i] lst[i] + r = a

##

DivNP := function(a, lst)

local b,pos ,r,Q, ltms;

40 r := a; Q := 0*[1.. Size(lst)]; ltms := LTermsNP(lst);

if (not(r = [[] ,[]])) then pos := Position(ltms , r[1][1]); fi;

while (not((r = [[] ,[]]) or (pos = fail))) do

Q[pos] := Q[pos] + r[2][1];

45 r := CleanNP(AddNP(r, lst[pos], 1, -r[2][1]));

if (not(r = [[] ,[]])) then pos := Position(ltms , r[1][1]); fi;

od;

50 return [Q, r];

end;

###

LstToSC(l)

55 ##

Transforms [a,b,0,d] into [a,1,b,2,d,4] i.e. list to structure constants

C.2. ALGORITHM I 77

##

LstToSC := function(l)

local a,i;

60 a := [];

for i in [1.. Size(l)] do

if (l[i] <> 0) then

Add(a, l[i]);

65 Add(a, i);

fi;

od;

return a;

end;

70

###

75 ## pol_ee(a, b, fab)

addext2(KI, a, b, fab)

addext3(KI, a, b, c, fabc)

##

Functions to create polynomials for input to the groebner basis algorithm

80 ##

pol_ee := function(a, b, fab)

return CleanNP(AddNP(bprod(a, bprod(a, b)), a, 1, -fab));

end;

addext2 := function(KI, a, b, fab);

85 Add(KI, pol_ee(a, b, fab));

Add(KI, pol_ee(b, a, fab));

end;

addext3 := function(KI, a, b, c, fabc);

Add(KI, pol_ee(a, bprod(b, c), fabc));

90 Add(KI, pol_ee(b, bprod(a, c), -fabc));

Add(KI, pol_ee(c, bprod(a, b), fabc));

end;

###

95 ## BaseKI(N, commutators)

##

Provides a standard set of polynomials to input into the groebner basis algorithm

##

BaseKI := function(N, commutators)

100 local i,r;

r := [];

for i in [1..N] do

Add(r, CleanNP ([[[i,i]] ,[1]]));

105 od;

for i in commutators do

Add(r, bprod(elt(i[1]), elt(i[2])));

od;

110

return r;

end;

78 APPENDIX C. GAP CODE

115 ###

FillBasis(basis , tmpsc , groebnerbasis , tracedbasis ,

arg1from , arg1to , arg2from , arg2to)

##

Consider the Lie brackets of basis elements arg1from .. arg1to with basis

120 ## elements ## arg2from ..arg2to , and see if the products are all in the basis.

If not , add them , meanwhile keeping track of things in tmpsc (the structure

constants) and tracedbasis (basis monomials).

##

FillBasis := function(basis , tmpsc , groebnerbasis , tracedbasis , arg1from , arg1to ,

125 arg2from , arg2to)

local added , div , i, j, newStartAt , startAt , p, innerLoopFrom , tsize , newsize;

added := 0;

for i in [arg1from .. arg1to] do

130 innerLoopFrom := Maximum(arg2from , i+1);

for j in [innerLoopFrom .. arg2to] do

p := rbprod(basis[i],basis[j],groebnerbasis);

div := DivNP(p, basis);

if (not(div[2] = [[] ,[]])) then

135 Add(basis , MkMonicNP(p));

Add(tracedbasis , [i, j, p[2][1]]);

added := added + 1;

Add(tmpsc , [i, j, [p[2][1] , Size(basis)]]);

140 else

Add(tmpsc , [i, j, LstToSC(div [1])]);

fi;

od;

od;

145

if (added > 0) then

newsize := Size(basis);

FillBasis(basis , tmpsc , groebnerbasis , tracedbasis ,

1, arg2to , arg2to + 1, newsize);

150 FillBasis(basis , tmpsc , groebnerbasis , tracedbasis ,

arg2to + 1, newsize , arg2to + 1, newsize);

fi;

end;

155 ###

TryToCleanBasis(in_basis , groebnerbasis , in_tmpsc)

##

Do trivial things to remove redundant basis elements.

##

160 ## Note: TracedBasis data is useless once this procedure is used on a basis

##

TryToCleanBasis := function(in_basis , groebnerbasis , in_tmpsc)

local basis , coeff , belt , c1, c2 , prod , tmpsc , i, j, t, u, div , p, newtmpsc ,

prodlst , basistmp , changed;

165 basis := in_basis;

tmpsc := in_tmpsc;

changed := true;

while (changed) do

170 changed := false;

for i in [1..(Length(basis))] do

basistmp := StructuralCopy(basis{Union ([1..(i-1)],

C.2. ALGORITHM I 79

[(i+1).. Length(basis)])});

p := CleanNP(StrongNormalFormNP(basis[i], groebnerbasis));

175 div := DivNP(p, basistmp);

if (div[2] = [[] ,[]]) then

#We may remove this element , but we have to change

#the structure constraints to reflect that removal

changed := true;

180

newtmpsc := [];

for u in tmpsc do

c1 := u[1]; c2 := u[2]; prod := u[3];

if (c1 <> i and c2 <> i) then

185 if (c1 > i) then c1 := c1 - 1; fi;

if (c2 > i) then c2 := c2 - 1; fi;

prodlst := List ([1..(Length(basis)-1)], i -> 0);

for t in [0..((Length(prod)/2) -1)] do

190 coeff := prod [2*t+1]; belt := prod [2*t+2];

if (belt < i) then

prodlst[belt] := prodlst[belt] + coeff;

elif (belt = i) then

if (Length(div [1]) <> Length(basis) - 1) then

195 Error ();

fi;

for j in [1.. Length(div [1])] do

if (div [1][j] <> 0) then

prodlst[j] := prodlst[j] + coeff*div [1][j];

200 fi;

od;

elif (belt > i) then

prodlst[belt -1] := prodlst[belt -1] + coeff;

fi;

205 od;

Add(newtmpsc , [c1, c2 , LstToSC(prodlst)]);

fi;

od;

210 tmpsc := StructuralCopy(newtmpsc);

basis := basistmp;

break;

215 fi;

od;

od;

return rec(basis := basis , tmpsc := tmpsc);

220 end;

###

FindLieAlgebra(N, KI)

##

225 ## The function calling all of the above in the correct order.

FindLieAlgebra := function(N, KI)

local GB, t1, t0 , t1a , t2, t3, t4, tmpsc , tracedbasis , i, r, B, T, u, b, L, S;

#Create Groebner Basis

230 t0 := Runtime ();

80 APPENDIX C. GAP CODE

Print("Input KI size ", Length(KI), "\n");

GB := SGrobner(KI);

t1 := Runtime ();

Print("\nSize of GB is ", Size(GB), "\n");

235

#Generate Lie Algebra Basis

Print("\nGenerating basis ...\n");

B := [];

for i in [1..N] do

240 Add(B, [[[i]] ,[1]]);

od;

Apply(B, i -> MkMonicNP(CleanNP(i)));

tmpsc := [];

tracedbasis := List ([1.. Length(B)], i->[i]);

245 FillBasis(B, tmpsc , GB, tracedbasis , 1, Size(B), 1, Size(B));

Print("\nThe basis has size ", Size(B), ". Cleaning ...\n");

#Clean Lie Algebra basis

t1a := Runtime ();

250 r := TryToCleanBasis(B, GB, tmpsc);

B := r.basis;

tmpsc := r.tmpsc;

Print("\nCleaned. The basis has size ", Size(B), ".\n");

255 #Construct Lie Algebra

t2 := Runtime ();

Print("\nThe resulting Lie Algebra basis has size ", Size(B), "\n");

Print("\nConstructing Table of Structure Constants");

T := EmptySCTable(Size(B), 0, "antisymmetric");

260 for u in tmpsc do

SetEntrySCTable(T, u[1], u[2], u[3]);

od;

Print(" Done. \n");

265 #Output properties of Lie algebra

b := TestJacobi(T);

if (not(b = true)) then

Error("T does not fulfill the Jacobi identity.");

fi;

270

Print("Constructing Lie Algebra by Structure Constants ...");

L := LieAlgebraByStructureConstants(Rationals , T);

t3 := Runtime ();

Print("Done\n");

275 Print(" ", L, "\n");

S := LieSolvableRadical(L);

Print(" Lie Algebra of dim: ", Dimension(L), "\n");

Print(" Radical of dim : ", Dimension(S), "\n");

Print(" Simple : ", IsSimpleAlgebra(L/S), "\n");

280 Print(" Semi Simple Type : ", SemiSimpleType(L/S), "\n");

t4 := Runtime ();

Print("Time used: \n");

Print(" Groebner Basis : ", (t1 - t0), "\n");

285 Print(" Lie Algebra Basis : ", (t1a - t1), "\n");

Print(" Clean LA Basis: : ", (t2 - t1a), "\n");

Print(" Lie Algebra Constr: ", (t3 - t2), "\n");

Print(" SemiSimpleType : ", (t4 - t3), "\n");

C.3. ALGORITHM II - STEP 1 81

Print(" TOTAL : ", (t4 - t0), "\n");

290

return rec(L := L, B := B, S := S);

end;

C.3 Algorithm II - Step 1

RequirePackage("gbnp");

###

Elt(i)

5 ##

Returns the monomial i in GBNP format

##

elt := function(i)

return [[[i]] ,[1]];

10 end;

###

bprod(a,b)

##

15 ## Returns ab-ba

##

bprod := function(a,b)

return AddNP(MulNP(a,b),MulNP(b,a),1,-1);

end;

20

###

DivNP(pol , B)

##

Returns [[Q], r], where:

25 ## * Q is a list of size Size(lst)

* sum Q[i] lst[i] + r = a

##

DivNP := function(a, lst)

local b,pos ,r,Q, ltms;

30

r := a; Q := 0*[1.. Size(lst)]; ltms := LTermsNP(lst);

if (not(r = [[] ,[]])) then pos := Position(ltms , r[1][1]); fi;

while (not((r = [[] ,[]]) or (pos = fail))) do

35 Q[pos] := Q[pos] + r[2][1];

r := CleanNP(AddNP(r, lst[pos], 1, -r[2][1]));

if (not(r = [[] ,[]])) then pos := Position(ltms , r[1][1]); fi;

od;

40

return [Q, r];

end;

###

45 ## LstToSC(l)

##

Transforms [a,b,0,d] into [a,1,b,2,d,4] i.e. list to structure constants

##

LstToSC := function(l)

50 local a,i;

a := [];

82 APPENDIX C. GAP CODE

for i in [1.. Size(l)] do

if (l[i] <> 0) then

55 Add(a, l[i]);

Add(a, i);

fi;

od;

return a;

60 end;

65 ###

pol_ee(a, b, fab)

##

Functions to create polynomials for input to the groebner basis algorithm

##

70 pol_ee := function(a, b)

return CleanNP(bprod(a, bprod(a, b)));

end;

###

75 ## AddEEPolsRec(GBIn , lst , paramlen_togo , pol)

AddEEPols(GBIn , lst , paramlen)

##

Functions to add polynomials describing the extremality of elements during

our calculations

80 ##

AddEEPolsRec := function(GBIn , lst , paramlen_togo , pol)

local a, p;

if (paramlen_togo = 0) then

for a in lst do

85 p := CleanNP(bprod(elt(a), bprod(elt(a), pol)));

if (p <> [[] ,[]]) then

Add(GBIn , p);

fi;

od;

90 elif (pol = []) then

for a in lst do

AddEEPolsRec(GBIn , lst , paramlen_togo - 1, elt(a));

od;

elif (pol <> []) then

95 for a in lst do

AddEEPolsRec(GBIn , lst , paramlen_togo - 1, bprod(elt(a), pol));

od;

fi;

end;

100 AddEEPols := function(GBIn , lst , paramlen);

AddEEPolsRec(GBIn , lst , paramlen , []);

end;

###

105 ## CalculateGBFromGradedGB(GradedGB , IntermediateResult , Changed , N)

##

Calculates a Groebner Basis from Graded polynomials; using intermediate results

if possible.

##

C.3. ALGORITHM II - STEP 1 83

110 ## Input is st GradedGB[d] only contains homogeneous polynomials of degree d.

##

CalculateGBFromGradedGB := function(GradedGB , IntermediateResult , Changed , N)

local start ,d,e,t,time0 ,time1 ,GB;

115 start := Position(Changed , true);

if (start = fail or start = 1) then

start := 1;

GB := [];

else

120 GB := StructuralCopy(IntermediateResult[start - 1]);

fi;

time0 := Runtime ();

Print("LOG: Starting groebner basis calculation at degree ", start , "\n");

125 for d in [start .. Length(GradedGB)] do

if (Length(GradedGB[d]) > 0) then

for e in GradedGB[d] do

Add(GB, e);

od;

130 GB := SGrobnerTrunc(GB, d, List ([1..N], i->1), 1);

fi;

IntermediateResult[d] := StructuralCopy(GB);

od;

135 time1 := Runtime ();

Print("LOG: Groebner basis calculation finished. Runtime: ", time1 -time0);

Print(" msces.\n");

return GB;

140 end;

###

CleanTracedBElt(elt)

##

145 ## Clean up an element of the traced basis. Example: If m = [x,y] + y is in the

basis , and we find a ’new ’ element , namely [x,m], then the traced basis will

contain [x,[x,y]] + [x,y]. This function fixes this , and returns [x,y], since

[x,[x,y]] = 0.

##

150 CleanTracedBElt := function(elt)

local m, r, eltin , pos;

eltin := StructuralCopy(elt);

r := [];

155

while (Length(eltin) > 0) do

m := eltin [1];

eltin := eltin {[2..(Length(eltin))]};

160 pos := PositionProperty(eltin , i->(i[2] = m[2]));

while (pos <> fail) do

m[1] := m[1] + eltin[pos][1];

eltin := eltin{Union ([1..(pos - 1)], [(pos + 1)..(Length(eltin))])};

pos := PositionProperty(eltin , i->(i[2] = m[2]));

165 od;

if (m[1] <> 0) then

84 APPENDIX C. GAP CODE

Add(r, m);

fi;

170 od;

return r;

end;

175

###

CleanBasis(B, GB, TracedB)

##

Returns: List of elements that can be removed from the basis , updating TracedB

180 ## in the process.

##

CleanBasis := function(B, GB, TracedB)

local a,b,c,lc,i,k,origi ,j,max ,t,p,div ,quotient , remainder , cntok ,cntrem , B2,

BTemp , TracedB2 , basischanged;

185

basischanged := true;

B2 := StructuralCopy(B);

TracedB2 := StructuralCopy(TracedB);

190 Print("LOG: Cleaning basis , input elements: ", Length(B2), "\n");

while (basischanged) do

cntok := 0; cntrem := 0;

i := 1;

195 basischanged := false;

while (i <= Length(B2) and (not(basischanged))) do

p := CleanNP(StrongNormalFormNP(B2[i], GB));

BTemp := StructuralCopy(B2{Union ([1..(i-1)], [(i+1).. Length(B2)])});

200 div := DivNP(p, BTemp);

if ((div[2] = [[] ,[]])) then

B2 := BTemp;

TracedB2 := StructuralCopy(TracedB2{Union ([1..(i-1)],

[(i+1).. Length(TracedB2)])});

205 Print("LOG: Removing element ", i, " from basis.\n");

elif (div [1] = List ([1.. Length(div[1])] , i->0)) then

i := i + 1;

else

basischanged := true;

210 remainder := div [2];

quotient := div [1]{[1..(i -1)]}; Add(quotient , 0);

Append(quotient , div [1]{[i..(Length(div [1]))]});

B2[i] := StructuralCopy(CleanNP(MkMonicNP(remainder)));

215

lc := remainder [2][1];

for j in [1.. Length(quotient)] do

if (quotient[j] <> 0) then

220 for k in TracedB2[j] do

Add(TracedB2[i],StructuralCopy(

[-1* quotient[j]*k[1], k[2]])

);

od;

225 fi;

C.3. ALGORITHM II - STEP 1 85

od;

for k in TracedB2[i] do

k[1] := k[1] / lc;

230 od;

fi;

od;

235 od;

Print("LOG: Basis cleaned , output elements: ", Length(B2), "\n");

return rec(B := B2, TracedB := TracedB2);

240 end;

###

findeebasis(N, commutators)

245 ##

The main function , using the above. Returns record containing:

B : Basis elements (in Universal Enveloping Algebra)

BPos : Pointers to where basis elements of specified degrees start

GB : Groebner basis describing extremality

250 ## N : Number of extremal generators

TracedB : Traced basis elements

##

findeebasis := function(N, commutators)

local added ,a1, a2, b1, b2, c, i, j, k, K, div ,m,p, p0, r, BPos , B, NewB ,

255 NewBCleaned , GB, GradedGB , GBChanged , GBIntermediate , tpol , maxlen ,

len , obsolete , time0 , time1 , TracedB , NewTracedB , NewTracedBCleaned;

time0 := Runtime ();

260 #Initialization

B := List ([1..N], i->elt(i));

TracedB := List ([1..N], i->([[1, i]]));

#Polynomials of degree i can be found in B[BPos[i]] till B[BPos[i+1]]

BPos := [1, N+1];

265

GradedGB := [];

GradedGB [2] := List ([1..N], i->[[[i, i]] ,[1]]);

GradedGB [3] := []; AddEEPols(GradedGB [3], [1..N], 1);

270 for c in commutators do

Add(GradedGB [2], bprod(elt(c[1]), elt(c[2])));

od;

GBIntermediate := List ([1.. Length(GradedGB)], i->[]);

275 GBChanged := List ([1.. Length(GradedGB)], i->true);

len := 1;

maxlen := 25;

280 added := 1;

while ((len < maxlen) and (added > 0)) do

#Update groebner basis

len := len + 1;

86 APPENDIX C. GAP CODE

for i in [1..(len + 2)] do

285 if (not(IsBound(GradedGB[i]))) then

GradedGB[i] := [];

GBIntermediate[i] := [];

fi;

od;

290 GB := CalculateGBFromGradedGB(GradedGB , GBIntermediate , GBChanged , N);

GBChanged := List ([1.. Length(GradedGB)], i->false);

#Find new monomials

added := 0;

295 a1 := BPos [1]; a2 := BPos [2] - 1;

b1 := BPos[len - 1]; b2 := BPos[len] - 1;

NewB := [];

NewTracedB := [];

Print("LOG: Generating elements of length ", len , "\n");

300 for i in [a1..a2] do

for j in [b1..b2] do

p0 := CleanNP(bprod(B[i], B[j]));

p := CleanNP(StrongNormalFormNP(p0 , GB));

div := DivNP(p, B);

305

if (not(div[2] = [[] ,[]])) then

Add(NewB , CleanNP(MkMonicNP(p)));

m := [];

for k in TracedB[j] do

310 Add(m,

[(1/(p[2][1])) * k[1], [i, StructuralCopy(k[2])]]

);

od;

Add(NewTracedB , m);

315 added := added + 1;

fi;

od;

od;

Print("LOG: Generated ", Length(NewB), " elements of length ", len , "\n");

320

Keep track of what changed

if (added > 0) then

r := CleanBasis(NewB , GB, NewTracedB);

NewBCleaned := r.B;

325 NewTracedBCleaned := r.TracedB;

Print("LOG: --> Adding ", Length(NewBCleaned), " of ", Length(NewB));

Print(" bracketings of length ", len , ", ");

Print(Length(NewBCleaned) + Length(B), " so far.\n");

330 for p in [1.. Length(NewBCleaned)] do

Add(B, NewBCleaned[p]);

Add(TracedB , CleanTracedBElt(NewTracedBCleaned[p]));

for k in [1..N] do

tpol := CleanNP(bprod(elt(k), bprod(elt(k), NewBCleaned[p])));

335 Add(GradedGB[len + 2], tpol);

GBChanged[len + 2] := true;

od;

od;

340 Add(BPos , Length(B) + 1);

C.3. ALGORITHM II - STEP 1 87

fi;

od;

345

time1 := Runtime ();

Print("LOG: Basis of ", Length(B), " elements found\n");

Print("LOG: Total time taken: ", time1 -time0 , " msecs.\n");

350

return rec(B := B, BPos := BPos , GB := GB, N := N, TracedB := TracedB);

end;

	Abstract
	Contents
	1 Introduction
	2 Lie Algebras - An Introduction
	2.1 Definition
	2.2 Representations
	2.3 Ideals
	2.4 Simple Lie Algebras
	2.5 Solvability and Nilpotency
	2.6 Universal Enveloping Algebras

	3 Extremal Elements
	3.1 Introduction
	3.2 Lie Algebras Generated by Extremal Elements
	3.3 The Radical and the Bilinear Form f
	3.4 Generating Semi-Simple Lie Algebras

	4 Lie Algebras Generated by Two Extremal Elements
	4.1 Structure
	4.2 Classification by Structure Constants

	5 Lie Algebras Generated by Three Extremal Elements
	5.1 Dimension
	5.2 Structure
	5.3 Classification by Structure Constants

	6 Lie Algebras Generated by Four Extremal Elements
	6.1 Dimension
	6.2 Classification by Structure Constants
	6.3 Using GAP to Find the Structure
	6.4 The Nilpotent Case and Beyond
	6.5 Analysis of Degenerate Cases

	7 Intermezzo: Algorithms
	7.1 Algorithm I
	7.2 Algorithm II
	7.3 Algorithm III

	8 Lie Algebras Generated by Five Extremal Elements
	8.1 Structure
	8.2 Analysis of Degenerate Cases
	8.3 Isomorphic Degenerate Cases

	9 Lie Algebras Generated by n Extremal Elements
	9.1 An
	9.2 Cn
	9.3 An Revisited
	9.4 Three Conjectures

	10 Conclusion and Recommendations
	Bibliography
	Index
	A Simple Lie Algebras
	B Multiplication Tables
	C GAP Code
	C.1 Three Generator Case
	C.2 Algorithm I
	C.3 Algorithm II - Step 1

