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Abstract

A Lie algebra L is a vector space over the field F accompanied by a bilinear map [-, ] :
L x L — L which is skew-symmetric (i.e. [z,z] = O for all x € L) and satisfies the
Jacobi identity: [x, [y, 2]] + [y, [z, 2]] + [#, [z, y]] = O for all z,y,z € L. Lie algebras
have their applications for example in physics (see for example [SW86] or [BK90]), and
in the study of differential equations (see for example the PhD thesis by Jan Draisma
[Draoz]).

An element z € L is called an extremal element if [z, [x, L]] C Fx. In this Master’s
thesis we study Lie algebras generated by finitely many extremal elements, building on
results by Cohen, Steinbach, Ushirobira, and Wales [CSUWo1]. In that paper various
important properties of Lie algebras generated by extremal elements are proved, for ex-
ample the fact that a Lie algebra generated by finitely many extremal elements is always
finite dimensional. It is also proved that all simple Lie algebras can be generated by ex-
tremal elements. Moreover, the two and three extremal generator cases are extensively
studied.

In this Master’s thesis we continue with the four and five extremal generator cases.
Let S,, be the set of Lie algebras generated by n extremal elements. Cohen et al. proved
that both S, and Ss contain a semi-simple Lie algebra of maximal dimension, A; and
A,, respectively. We find that also S, contains a semi-simple Lie algebra of maximal
dimension, namely D,. However, we prove that the maximal dimension occurring in
S5 is 537, and that no 537-dimensional semi-simple Lie algebra occurs in S.

Moreover, we study degenerate cases of Lie algebras generated by four or five ex-
tremal elements, i.e. instances where one or more pairs of the generating extremal
elements commute. Lastly, we show how the simple Lie algebras A,, and C,, can be
generated by extremal elements.
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Chapter 1

Introduction

There is no branch of mathematics, however abstract, which
may not someday be applied to the phenomena of the real world.
— Nicolai Lobachevsky (r793-1856) [MQ]

A Lie algebra L is a vector space over the field F accompanied by a bilinear map
[,] : L x L — L which is skew-symmetric (i.e. [z,2] = 0 for all z € L), and which
satisfies the Jacobi identity:

[z, [y, 2]] + [y, [z, x]] + [z, [z,y]] =0 forall x,y, z € L.

Lie algebras have their applications for example in physics (see for example [SW&0]
or [BK9go]), and in the study of differential equations (see for example the PhD thesis
by Jan Draisma [Draoz]). To get a feeling for the applications in physics it might be
worth skimming through Chapter 4 of [SW86]. Section 1.2 of [Drao2] provides an
excellent overview of the connection between ordinary differential equations and finite
dimensional Lie algebras.

An element z € L is called an extremal element if we have [z, [z, y]] € Fx for each
y € L. In this Master’s thesis we study Lie algebras generated by finitely many extremal
elements, especially those generated by four or five extremal elements. Applications
for extremal elements stem from the fact that long root elements are extremal in Lie
algebras of Chevalley type. They were used by Chernousov [Che&9)] in his proof of the
Hasse principle for Es. Sandwich elements, elements « € L with [z, [x,y]] = 0 for all
y € L, are a special kind of extremal elements, with an application in Lie algebras over
fields of small characteristic [PS97].

In order to study Lie algebras generated by extremal elements we start with small
cases, i.e. Lie algebras generated by a few extremal elements, and try to find patterns.
Cohen et al. extensively study the two and three generator case [CSUWo1], derive vari-
ous important basic properties of Lie algebras generated by extremal elements, and give
bounds on the number of extremal elements required to generate simple Lie algebras.
In this Master’s thesis we build on their results, and extensively study the four and five
generator cases. We prove that the five generator case significantly differs from the
smaller cases (see Section 8.1), and we show how two of the four classical Lie algebras
are generated by extremal elements (see Chapter 9).

Chapter 2 of this report contains a general introduction to Lie algebras (inspired
mainly by [Halo3] and [Hum?2]) and Chapter 3 contains a general introduction to ex-
tremal elements. Though this chapter was mainly inspired by [CSUWo1], Section 3.4
contains a new result. In Chapters 4 and 5 we consider Lie algebras generated by two
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and three extremal elements, respectively. These chapters serve both as an overview of
the results of [CSUWo1] and as an introduction to the following chapters.

In Chapter 6 we consider Lie algebras generated by four extremal elements. The
first part of this chapter contains results from [CSUWoi1], but Sections 6.2 through 6.5
are new. In Chapter 7 we give an overview of the algorithms introduced in the previous
chapter, and we introduce a new algorithm. Chapter 8 contains the analysis of Lie
algebras generated by five extremal elements, almost entirely composed of new results.
Especially the extensive analysis of degenerate cases in Section 8.2 appears to be new
information. This analysis is a result of the algorithms described in Chapter 7.

Lastly, Chapter 9 contains three theorems and three conjectures on Lie algebras
generated by arbitrary many extremal elements. A conclusion and some recommenda-
tions can be found in Chapter 10.

Unless mentioned otherwise, we work over fields of characteristic 0. To avoid con-
fusion, we write ‘generated’ if and only if we mean ‘generated as a Lie algebra’, and we
write ‘spanned’ if and only if we mean ‘linearly generated’.

Following good practice, I end this introduction with some acknowledgements.
First of all, I would like to thank Prof. Dr. A.M. Cohen, my supervisor, for the in-
spiring conversations, his valuable suggestions, and the thorough remarks he gave on
proofs and various versions of this report. Furthermore, my acknowledgements go to
Dr. F.G.M.T. Cuypers and Prof. Dr. Ir. J. de Graaf for being members of my graduation
committee and for their useful comments on earlier versions of this report. I should
also thank Willem de Graaf (University of Trento) for the short yet clarifying e-mail
discussion we had about his work on this particular subject.

Dan Roozemond, August 2005



Chapter 2

Lie Algebras - An Introduction

This chapter presents an introduction to Lie algebras in general. Many great books exist
on this topic, for instance the classic ‘Introduction to Lie Algebras and Representation
Theory’ by James E. Humphreys [Hum?2] or ‘Lie Algebras’ by Nathan Jacobson [Jac62].
For a thorough introduction one might also consult [Halo3] or [Var84]. Some very nice
notes on the topic were written by Serre [Ser87], and for an introduction a bit more
focussed on applications refer to [SW8G6]. This chapter was mainly inspired by [Halo3]
and [Hum?72].

2.1 Definition

Because this chapter provides an introduction to Lie algebras, it is only logical to start
by defining the notion Lie algebra.

Definition 2.1. (Lie Algebra) A finite-dimensional Lie Algebra is a finite-dimensional

vector space L over a field F together with a map [-,-] : L x L — L, with the following
properties:
1. [-,+] is bilinear: [z + v, y] = [z, y] + [v,y] for all z,v,y € L and [ax,y] = alz,y]

forall z,y € Land « € F, [z,y + w] = [z,y] + [z,w] for all z,y,w € L and
[, By] = Blz,y] forallz,y € Land B € T,

2. [+, ] is skew-symmetric: [z,2] = Oforallx € L,
3. The Jacobi identity holds: [z, [y, z]] + [y, [z, z]] + [z, [x,y]] = 0 for all z;,y, z € L.

In order to get somewhat acquainted with the notion of a Lie algebra, we first give
two examples.

Example 2.2. The first example is R? with [z, y] := z X y, the vector product, i.e.

T Y1 T2Y3 — T3Y2
To X Y2 = T3Y1 — T1Y3 . (2..1)
T3 Y3 T1Y2 — T2Y1

It is straightforward to verify that indeed [z, y] is bilinear and skew-symmetric.
Verification of the Jacobi identity is straightforward as well.
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Example 2.3. A whole range of examples can be found as follows. Let V be a
vector space, and L the ring of all linear transformations V' — V. Define [X, Y] =
XY —YX foreach X,Y € L. Obviously, [+, ] is bilinear, and [X, X] = 0. For the
Jacobi identity we have:

(X, [V Z)| + [V, [Z, X]| + [Z,[X, Y]] =
X,YZ - ZY]+[Y,ZX — XZ] + [2, XY - Y X] =
XYZ-XZY ~YZX +ZYX +YZX - YXZ+
—ZXY + XZY +ZXY —ZYX —XYZ+YXZ =0.

So indeed this gives us a Lie algebra, which we will call the general linear algebra
gl(V). It is clear that the above can be done for any associative algebra L.

Note that the first and second property in Definition 2.1 together imply [z,y] =
—[y,z] forall z,y € L:

O0=[z+yz+yl=z2]+ [yl + [y 2]+ [y,9] = [z,9] + [y, 2] (2.2)
We define two more notions on Lie algebras.

Definition 2.4. Let L and Lo be Lie algebras. A linear map ¢ : L1 — Lo is called a
Lie algebra homomorphism if o([z,y]) = [¢(z), ¢(y)] for all z,y € L. If a Lie algebra
homomorphism ¢ is a bijection, then ¢ is called a Lie algebra isomorphism. A Lie
algebra homomorphism ¢ : L — L is called a Lie algebra automorphism.

If L is a Lie algebra, then we define for any ¢ : L — gl(L) that [p(x), ¢(y)] =
o(x)e(y) — o(y)p(x), analogous to Example 2.3.
Definition 2.5. (Ad) Let L be a Lie algebra. For z € L, we define a linear map ad, :
L — Lby
ad(y) = [z, y]. (2:3)
Thus ad (i.e. the map z — ad,) is in fact a linear map from L into the space of linear
operators from L to L.

The ad function is useful in the sense that it makes things definitely more readable:
instead of writing [z, [, [z, [z, [z, y]]]]] we will now simply write (ad, )% (y). We have the
following useful property for the ad function:

Lemma 2.6. If L is a Lie algebra, then ad is a Lie algebra homomorphism from L to gl(L).

Proof Let L be a Lie algebra, and let z,y € L. Then we have, for every z € L, (by the
Jacobi identity):

ad[a:,y] (Z) = Hl',yLZ]
= _[Zv [:ay]]
= [.%‘, [y7 Z]] + [yv [vaﬂ
= [CL‘, [yv Z]] - [ya [$7 Z”

adzady(z) — adyad,(2)
(adzad, — adyad,)(2)
= [ads,ady](2), (2-4)

so indeed ad[, ,) = [ad., ad,], so ad is a homomorphism. O

Definition 2.7. (Derivation) A derivation d is a Lie algebra homomorphism satisfying

d([z,y]) = [d(z), y] + [z, d(y)].

If we pick an image of ad in gl(L), we see that it acts as a derivation on L:
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Lemma 2.8. If L is a Lie algebra and x € L, then ad, is a derivation, i.e. ad,([y, z]) =
[y, ade(2)] + [ada(y), 2].

Proof Letx € L, and observe the action of ad, on [y, 2] for y, z € L:

adw([y,z]) = [m7 [y,z]]
= [ya [J:,Z]] - [Zv [x,y]
= [y,ads(z)] = [z, ads(y)]
= [y,ads(2)] + [ada(y), z]. (2-5)

Furthermore, we have the following notion:

Definition 2.9. (Monomial) A monomial of length s is a bracketing of the form

(1, [22, [T3, ... [Ts—1, 2] - - .]]]-

If we consider a Lie algebra generated by elements G, we usually take monomials
to be those bracketings where z1,...,2z; € G. Furthermore, we then have the notion
of reducible monomial: A monomial is called reducible if it is a linear combination of
monomials of strictly smaller length.

2.2 Representations

Again, let L be a Lie algebra over the field F, and V' a vector space over F.

Definition 2.10. (Representation) A representation of Lin V isamap ¢ : L — End(V)
such that

e ¢ is linear, and

o o([z,y]) = p(x)p(y) — p(y)p(x) forall 2,y € L.

If V is finite dimensional, the above is equivalent to saying that ¢ is a homomor-
phism of L into gl(V'). A well known representation is the adjoint representation of a
Lie algebra: ¢ : L — gl(L),  — ad,.

There is a well-known result on representations of finite dimensional Lie algebras:

Theorem 2.11. (Ado’s Theorem) Every finite dimensional Lie algebra L of characteristic zero
has a faithful finite dimensional representation.

The proof of this theorem is beyond the scope of this document. It can be found in
[Jac62, Chapter VI].

2.3 Ideals

Note that we defined gl(V') as the set of linear transformations of a vector space V' to
itself, viewed as a Lie algebra (see Example 2.3).

Definition 2.12. (Linear Lie Algebra) A Lie algebra L is called a linear Lie algebra if it is
isomorphic to a subalgebra of gl(V') for some vector space V.

Example 2.13. Since gl(V) is always finite dimensional, any infinite dimensional
Lie algebra is an example of a nonlinear Lie algebra. Take for example the Lie
algebra L = (a, b), where we may create strings of arbitrary length consisting of
a’s and b’s.

The notion of ideals in rings extends to ideals in Lie algebras:
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Definition 2.14. (Ideal) A subspace I of a Lie algebra L is called an ideal if [z, y] € I if
re€Landy € I.

Example 2.15. Let L be a Lie algebra. Obviously, {0} and L are ideals.

A more interesting example is the center of L:

Z(L)y={z€L|[z,z] =0forallz € L}. (2.6)

Indeed, if welety € Land z € Z(L), then [y, z] =0 € Z(L).

Lemma 2.16. IfI and J are both ideals of L, then I + J = {x +y |z € I,y € J} isan
ideal, and sois [I, J] = {X[xs, yi] | i € I, y; € J}.

Proof Let I and J be ideals of a Lie algebra L. It is straightforward that I + J is an
ideal of L, so we focus on [I, J]. Lety € Land z € [I,J],s0 z = [a1,b1] + ...+ [as, by,
with a; € I and b; € J. Then, by bilinearity,

[ya Z] = [y’ [a17 bl” +...+ [y7 [at; bt]] (2‘7)

By Jacobi, we have for every term of this equation,

[y, [ai, bi]] = [ai, [y, bi]] + [bs, [ai, y]] = [ai, [y, bi]] + [[y, @il, B], (2-8)

and both of these terms are of the form [a,b] with a € T and b € J. So indeed [y, z] €
[1,J], as desired. O

A special case of the latter construction is [L, L], the derived algebra of L. We end
this section with one more definition.

Definition 2.17. (Abelian) A Lie algebra L is called Abelian if [L, L] = 0.

2.4 Simple Lie Algebras

A very important property of a Lie algebra is the following:

Definition 2.18. (Simple Lie Algebra) A Lie algebra L is said to be simple if [L, L] # 0
and L has no ideals except {0} and L itself.

Corollary 2.19. If we consider ad as a map from L into the space of linear operators on
L, we see that its kernel is equal to the center of L:

ker(ad) = {z € L | ad,(y) =0forally € L} = Z(L). (2-9)

So if L is a simple Lie algebra, ker(ad) = {0}, hence ad is an isomorphism of L to
gl(L), so any simple Lie algebra is a linear Lie algebra.

Example 2.20. Let V be a vector space over F of dimension n. Recall that the trace
of a matrix M is the sum of its diagonal elements, commonly denoted by tr(M),
and independent of the choice of basis. Then we let sl(V') (or sl,,(F) if V = F7")
denote the set of endomorphisms of V" having trace zero.

Since tr(z + y) = tr(z) + tr(y) and tr(zxy) = tr(yz), we know that sl(V) is a
subalgebra of gl(V'). It is called the special linear algebra. It is easy to see that the
dimension of s[(V) is n? — 1.
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It can be proved that only a very limited number of classes of simple Lie algebras
exist. Over fields of characteristic 0 there exist four families called the classical Lie
algebras, and five exceptional simple Lie algebras. In this report we limit ourselves to
giving a list of these algebras. The accompanying proof, however, is certainly worth
reading: consult for instance Chapter III of [Hum?2].

The four families of classical Lie algebras are:

e A, (n > 1): The Lie algebra of the special linear group in n + 1 variables, also
denoted sl,, 1, and most commonly represented by all (n + 1) x (n + 1) ma-
trices with trace 0 (see Example 2.20). It is easy to see that this Lie algebra has
dimension (n + 1)% — 1.

e (), (n > 3): The Lie algebra of the symplectic group in 2n variables, also denoted
5p,,,. Welet V be a vector space of dimension 2n, and denote its elements as row
vectors. We define the non-degenerate bilinear form g on V' by the matrix G:

G= ( j}n I(;L ) . (2.10)

It is easy to see that g is an skew-symmetric bilinear function into F. Now
s, consists by definition of all endomorphisms z of V satisfying g(x(v),w) =
—g(v, z(w)). It is not hard to see that the dimension of sp,,, is n(2n + 1).

e B, (n > 2): The Lie algebra of the special orthogonal group in 2n + 1 variables,
also denoted 09,,41. Similar to the previous case, we let V' be a vector space of
dimension 2n + 1, and define the non-degenerate bilinear form g on V by the

matrix G:
1 0 0
G=(0 0 I, ]. (2.11)
0 I, O

Now 02,11 consists by definition of all endomorphisms x of V satisfying g(z(v),w) =
—g(v, z(w)). Its dimension is n(2n + 1).

e D, (n > 4): The Lie algebra of the special orthogonal group in 2n variables, also
denoted 09,,. This Lie algebra is defined in the same way as 02,11, only V has
dimension 2n again and G has the simpler form

G:(I(l Ig) (2.12)

The dimension of 0y, is n(2n — 1).

Note that we could also define B,, and C,, for n > 1 and D,, for n > 3, but to avoid
repetitions (because A; = By = C4y, By = O, and A3 = Dj3) we usually use the
numbering above.

The exceptional Lie algebras are denoted by G5 (of dimension 14), F}; (of dimension
52), Es (of dimension 78), E; (of dimension 133), and Eg (of dimension 248).

2.5 Solvability and Nilpotency

A given Lie algebra could be solvable or nilpotent:

Definition 2.21. (Solvability) Let L be a Lie algebra. We define a sequence of ideals of
L by
LO =11 =[L,L),L® = [LW, LW = [[L, L}, [L, L]], L® = [L®,L®)], .. ..

(2.13)
L is called solvable if L™ = 0 for some n.
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So from the definitions we immediately see that Abelian Lie algebras are always
solvable, and simple Lie algebras are never solvable.

Definition 2.22. (Nilpotency) Let L be a Lie algebra. We define a sequence of ideals of
L by

L°=1L,L' =[L,L),L*> =L, L' = [L,[L,L]], L* = [L,L?],.... (2.14)

L is called nilpotent if L™ = 0 for some n.

Example 2.23. We let L be the Lie algebra over the field F generated by a, b, and
¢, such that [a,b] = [a,c] = a and [b,¢] = 0. It is easy to see that this Lie algebra
satisfies the Jacobi identity:

[a, [b, c]] + [b, [c,a]] + [¢, [a,b]] =0 — [bya] + [c,a] = — —a+ —a=0. (2.15)

Furthermore, [L, L] = Fa so [[L, L], [L, L]] = 0 and L is solvable. However, L is
not nilpotent: for example, [b, [b, [. .., [b, a]]]] is nonzero for any arbitrary number
of b’s in front.

Similarly, an ideal I is called solvable if I(™) = 0 for some n, and it is called nilpotent
if I = 0 for some n. It is easy to see that every nilpotent Lie algebra (ideal) is solvable,
since [L, L] C L. A solvable Lie algebra (ideal), however, is not necessarily nilpotent.

Definition 2.24. (Radical) Let L be a Lie algebra. The radical of L, denoted by Rad(L),
is the largest solvable ideal of L.

Definition 2.25. (Nilradical) Similarly, we define the nilradical of L, denoted by NilRad(L),
as the largest nilpotent ideal of L.

It is straightforward to see that a Lie algebra has a unique radical. Suppose I and J
are solvable ideals of a Lie algebra L. Then J/(INJ) is solvable (because J is solvable),
so (I +J)/I is solvable (because (I +J)/I = J/(INJ)),so I+ Jissolvable. So there
is a unique solvable ideal containing all solvable ideals of L, which is exactly the radical
of L. With a similar argument we see that the nilradical of a Lie algebra is unique.

Definition 2.26. (Semi-simple Lie Algebra) A Lie algebra L is said to be semi-simple if
Rad(L) = 0.

Theorem 2.27. Let L be a Lie algebra. Then L/Rad(L) is semi-simple.

Proof Let ¢ be the natural map of L onto L/Rad(L). If I is a solvable ideal of L/Rad (L),
then ¢ ~!(I) must be a solvable ideal of L, and we have Rad(L) C ¢~ !(I). Moreover,
by maximality of Rad(L) we have »~1(I) C Rad(L), hence Rad(L) = ¢~!(I). This
shows that I = 0, hence L is semi-simple. O

We end this section with a very important theorem.

Theorem 2.28. L is semi-simple if and only if it is isomorphic to a direct sum of simple Lie
algebras.

The proof of this theorem is beyond the scope of this report. Consult for instance
Section 2 of [Humy2] or Chapter 6 of [Halos]. It should be noted that in some books
semi-simplicity is defined as in Theorem 2.28, and then Definition 2.26 is proved as a

property.
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2.6 Universal Enveloping Algebras

Now we arrive at the notion universal enveloping algebra.

Definition 2.29. (Universal Enveloping Algebra) Let L be a Lie algebra over the field
F. A pair (i, ¢), where 4l is an associative algebra over F and ¢ is a linear mapping
of L into 4, is called a universal enveloping algebra of L if the following conditions are
satisfied:

e ¢(L) generates 4,

e o([z,y]) = p(@)p(y) — ¢(y)p(z) forall z,y € L, and

e If {1’ is any associative algebra and ¢’ is any linear map of L into Y’ such that
O ([z,y]) = ¢’ ()¢ (y) — @' (y)¢' (x) for all z, y € L, then there exists a (unique)
homomorphism 6 of il into i’ such that ¢’ (x) = 0(p(z)) forall z € L.

One special universal enveloping algebra is the following. Let L be a Lie algebra
and let T" be the tensor algebra over the underlying vector space of L. For z,y € L we
let

Upy =T RY —y @z — [7,Y]. (2.16)

By £ we denote the two sided ideal ) -, T'®ug,, ®T. We introduce the quotient
algebra U = T'/L, and let ¢ be the natural homomorphism of T onto U. Since L
generates T, we have that p(L) generates U. It is straightforward to verify that (U, )
is indeed a universal enveloping algebra of L. It is a bit more elaborate to prove that ¢
is in fact injective, see [Hum?2, Section 17.2].

Because ¢ is injective on L, it is possible to identify L with its image ¢(L) in U.
With this identification, U will be called the universal enveloping algebra of L.
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Chapter 3

Extremal Elements

3.1 Introduction

Definition 3.1. (Extremal Element) A nonzero element x of a Lie algebra L over F is
called an extremal element if [z, [x, L]] C Fa.

For extremal elements, ad has a very nice property: Let # € L be an extremal
element, then, forany y € L, ad?(y) = [z, [z, [z,]]] = [, ax] for a certain o € F, so
ad?(y) = a[z, z] = 0. We say that z is ad-nilpotent of order at most 3.

In the remainder of this section we will study Lie algebras generated by extremal
elements, using [CSUWo1]. We will assume that L is a Lie algebra over the field F of
characteristic not 2, and start with some general properties of extremal elements.

Since [z, [x, y]] is linear in y, we know that an element z € L is extremal if and only
if a linear functional f, : L — K,y — f.(y) exists, such that

[z, [z, y]] = fa(y)z forally € L. (3-1)

Note that, (in characteristic not equal to 2) if z and y commute, we have [z,y] =

[y, z], and by Definition 2.1 we have [z, y] = —[y, 2], so [z, y] = [y, ] = 0. This implies
fa (y) =0.

Following [CSUWor1], we will write £ for the set of non-zero extremal elements in
L.

Lemma 3.2. Ifz,y € &, then f,(y) = fy(z).

Proof Let z,y € £. We will compute [y, [z, [z, y]]] in two different ways.
On the one hand,

[ya [93, [l’aym = [ya fx(y)x] = fm(y)[y7x]v (3-2)

but on the other hand (by the Jacobi identity),

[y’ [Iv [;z:,y]]] = 7[.%, Hrv
= —[LE,[

I

|
8
;ﬁ
&
=,

= fy(@)[y, 2] (33)

So, provided that # and y do not commute, we may conclude f,(y) = f,(z). If z
and y commute, we have f,(y) = 0 = f,(z), as noted above. O

5
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We have some nice relations for calculations involving extremal elements. At least
the first two rules go back to Premet. In the remainder of this report we will refer to
them as (P1) to (P5).

Lemma 3.3. Let L be a Lie algebra over a field of characteristic not 2. Let x € & and
y,z € L. Then:

(P1) 2[[z,y], [z, 2]] = fa(ly, 2Dz + fa(2)[2,y] — fa(y)[z, 2],

(P2) 2[z, [y, [z, 2]l] = fo(ly, 2Dz — fa(2)[z, 9] — fa(y)[z, 2].

Nowletx,y € Eand z € L.

(P3) 2[[z, 9], [z, [y, 2]l = fy () fa W)z + fally, 2Dz, 9] — fa W)z, [y, 2]],

(P4) 2[[x,y], [[z,y], 2]] = (fa([y, 2]) = fy ([, 2])) [, y]+
fa()(fe(2)y + fy(2)z = [y, [2, 2]] = [, [y, 2]]).

Nowlet x,y,z € £.

(P5) 2[[z, [y, 211, ly, [z, 2)]] = =5 (fy(2) fu(ly, 2 + fully, 2]) fa(2)y + fo(ly, 2]) fa(y)2)
= [y fa(2) [,y + fy(2) o () [, 2] = fa(2) [ (y)y, 2].

Proof For sake of completeness we provide the straightforward proofs for these rela-
tions. Firstly, let © € £ and y, z € L. Then, using the Jacobi identity, we find

[[xv y]? [.’ﬂ, Z]] = —[[.’ﬂ, Z]a [1’7 y]]
= [$7 [yu [‘T7 2]]] + [yu H$7Z],ZL‘H
= [z [y [z 2] + fa(¥) [z, . (3-4)
Similarly, interchanging y and z, we find
[z, y], [z, 2]] = —[z, [2, [z, 9]]] = fa(y)[z, 2]. (3-5)
Furthermore, again by the Jacobi identity,
[z, [z, [z, y]l] = —[z, [z, [y, 2]]] = [z, [y, [z, 2]]] = —fally, 2])2 + [z, [y, [2,2]]],  (3.6)
SO
0= [xa [Za [x’ ym + fw([y, ZDZ‘ - [Z‘, [ya [.2?, Zm (3-7)
Adding Equations 3.4, 3.5, and 3.7 yields
2[[$, y]’ [1‘, Z]] = fw([y7 ZD.T + fx(Z)[ZC, y] - f:c(y)['rv Z]? (38)

which proves the first identity.
Inserting the first identity into the result of Equation 3.6 yields:

2[x, [y, [z, 2]]] 2[[z, yl, [z, 2]] = 2f2(2) [, y]
fr([yvz})x_fm(z)[xay]_fm(y)[xaz]v (39)

which proves the second identity.

Now let z,y € £ and z € L. Substituting [y, 2] for z in the first identity gives

20z, yl, [z, [y, 21l = fully, v, 21> + fu(ly, 2])[2, y] — fu(y) [z, [y, 2]]
= fy(2)f:0z + fo(ly, 2D[w, y] = fa ()], [y, 2], (3.10)

which proves the third identity. For the last identity, we first apply the Jacobi identity,
and then apply the third identity twice (using that f,(y) = f,(z) when both z and y
are extremal elements):

20, y], [lw,9], 2] = =2z, y) [z [, 9]]]
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= 2[z,y], [z, [y, 2]l] + 2[[x, 9], [y, [z, 2]
= H yl [, [y, 2] + 2[[y, z], [y, [, 2]]]
= KW+ Ly Dyl - L), b,2]
+fz( ) fy @)y + fy ([, 2Dy, 2] — fy(@)[y, [z, 2]
= [fo(u) (fy(2)x = [z, [y, 2l + fa (2)y — [y, [z, 2]]
+ (fe(ly, 2]) = fy ([, 2]) [=, ] (3-11)
For the last identity, we let z, y, z € £, and apply Jacobi to see that
[z [y; 2] by, [, 2] = =ly, [, 2], [, [y, 2]]]
= [1‘7 Hya 2]7 [ya [1‘7 Z]]]] - Hya Z], [.’E, [y7 [SL‘, Z]H] (3'12‘)

For the first term, we have

B
="
X,
=
5’
2,
|

= _gf(yv Z)f(l‘, z)[x, y] - %f(.%‘, [yv Z])[$7 [yv Z”
For the second term, we have
—(ly, 2], [=, [y, [z, 2]]]] =
= H Y, ]a Qf(‘r? [y,Z])ZL’ - %f(:ﬂ y)[x,z] - %f(:c,z)[:c,y]]
= 3f(zly, 2Dz [y, 2]]
—y( 20 2]+ ) S, 2l 2]~ 1) )l
(z,2)f (@, [y, 2])y — 1f(@,9) f (2, 2)[y, 2] — 3 f (@, 2) [ (y, 2) [z, ¥]

which is the statement to be proved.

This completes the proof of Lemma 3.3. O

Definition 3.4. (Exponential) We define, for z € £ and s € F, the following function:
1
exp(z,s) =1+ sad, + ESQadi. (3.13)

Since adi = 0if z € &, this is the exponential of the derivation sad,.

We verify that exp(z, s) is an automorphism of L. Firstly, note that [ad? (y), ad?(z)] =
fr(y)fx(z)[$7 -'13] = 0and

[ad.(y), ad2(2)] + [ad (y), ad, (2)]

TR
|
8
~
S—
58
=)
R
+
8
e
—
NS
=
=
&

Now we have the following chain of identities:

[exp(z, 5) (), exp(z, 5)(2)]
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1 1
= [y+sade(y) + 55°adi(y), 2 + sada(2) + 5 sad; (2)]

= 2+ [y sada()] + [y, P2 (2)]

Hsada (), 2]+ [sada (), sada(2)] + [sacd (), 3 5% (=)

g ad?(2), 2 4 [5%d3(2), sady (2)] + [55%d2 (), £ s%ad2(2)
= [y,2] + sly, ads(2)] + s[ada(y), 2]

1 1 1
+2 5’ fads (), ads (2)] + 55°[y, ad3 (2)] + 55 [ady (y), 2] +0+0

= [y 2]+ sada [y, 2]) + 5 5%ad? (1, 2)
= eXp(I,S)([y,Z]). (315)

So indeed exp(z, s) is an automorphism of L.

3.2 Lie Algebras Generated by Extremal Elements

Lemma 3.5. If L is generated as a Lie algebra by extremal elements, then it is spanned by the
set £ of all extremal elements.

Proof We consider z € L as a bracketing of elements from £. We apply induction on
the length of 2. If the length of z is 1 then z € £ and we are done.

Now suppose all monomials of length n are indeed linear combinations of elements
from € and z is a bracketing of length n + 1. Then consider the last two elements of z,
more precisely: z = [, [-,[- -+, [, [, y]] - - ]]] with 2,y € €. Now let m = exp(z,1)y =
Y + [,y] + 1 f(z,y)z, and note that m is an extremal element since exp(z,1) is an
automorphism. This means that

2= LEEesbm—y— i@yl
= [’1[’[7[7"”]”_[5[7[ v[7y] ]]]
_if(xvy)[v[’[ ,[,IE]]H, (316)
and we apply the induction hypothesis. This finishes the proof. O

We show how the map f defined in the beginning of this section (see Identity 3.1)
gives rise to a symmetric bilinear associative form:

Theorem 3.6. Suppose the Lie algebra L over the field IF is generated by the set of nonzero
extremal elements . Then a unique bilinear symmetric form f : L x L — K exists, such
that the linear form f, coincides with y — f(z,y) for each x € £. This form is associative
in the sense that f(x, [y, z]) = f([z,y], 2) for all triples x,y, z € L.

Proof By the previous lemma, we know a basis of L exists consisting of elements from
&, say uq,...,u;. Note thatif x € £ and a € F, then |ax, [az,y]] = o?f.(y)z =
af(x,y)az, so az is also extremal with f(ax,y) = af(z,y).

Now suppose x = ) . A\;u;, and define f, by >, \; fu,, which is equal to D, fx,u,-
Furthermore, suppose that both )" u; and ), v; are ways of writing an z € L as a
sum of extremal elements. Now we let z € £ and see, by Lemma 3.2,

fo(2) = qul(z) = ZfZ(uz) = fZ(Z u;) = fZ(Z v;) = ZfZ(Uz) = quz(z)7

(3-17)
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so, since &£ spans L (Lemma 3.5), we know that . f,, = >_. f.,. Hence, f, is a well
defined linear functional. It immediately follows that f(x,y) = f.(y) defines a bilinear
form, which is symmetric by Lemmas 3.2 and 3.5.

It remains to show that f is associative in the sense described above. Take z,y, z €
E. Interchanging x and y in (P4) gives

2z, y) [y, [, 2]l = = f (@, 2) f (@, 9)y + fy, [2, 2Dz, 9] + f 2,9y, [2,2]],  (3.18)

and Jacobi followed by the application of (P1) gives

2zl [y, [=,2]]l = —2[y,[[=, 2], [z, ] - 2[[x, 2], [z, 9], ]
= [y f(=ly,2])z + f(z,2)[z,y] - f(z, )]z, 2]
—2f(ac,y)[[as,z],y]
= —f(l‘, [y,Z])[I,y] —f(l’,Z)f(x,y)y
+f(z9)ly, [, 2]]. (3-19)

We now distinguish two cases.

o If [x,y] # 0 we compare the coefficients of [z, y| in the two expressions above,
and see that —f(x, [y, 2]) = f(y, [, z]). From this it follows that

f((E, [Zvy]) = _f(xv [yvz]) = f(yv [SL’,Z]) = f([x,Z],y), (3.20)

proving the statement if [z, y] # 0. By symmetry, we find f(z, [y, 2]) = f([z, y], 2)
if [z, 2] # 0and f(y, [z, 2]) = f([y, ], 2) if [y, 2] # 0.

o If [z,y] = 0and [z, 2] # 0 and [y, 2] # 0, we have f(z,[z,y]) = 0 = f([z,2],y)
by the previous calculations. By symmetry, we are left with the case [z,y] =
0, [z, z] = 0. By Jacobi, we have [z, [y, z]] = 0, and applying ad yields f(z, [y, z]) =
0= f([z,z],y). So we proved the statement.

This implies that f(z,[z,y]) = f([z,z],y) for all z,y,z € £. Since & spans L, this
completes the proof. O

One of the main results on Lie algebras generated by finitely many extremal ele-
ments is the following theorem.

Theorem 3.7. If L is generated as a Lie algebra by a finite number of extremal elements,
then L is finite dimensional.

This theorem is due to Zelmanov and Kostrikin [ZKgo]. The proof by Zelmanov
and Kostrikin requires the introduction of many notions, so we refrain from giving that
here. Another, somewhat shorter, version of the proof can be found in [CSUWo1].

3.3 The Radical and the Bilinear Form f

This section is a summary of the observations leading to one of the results of [CSUWor,
Section 9]. Throughout this section, L is a Lie algebra over the field F generated by
extremal elements, and £ is the set of extremal elements of L.

We define the radical of the bilinear form f (as introduced in Theorem 3.6) as
follows:

Definition 3.8. (Radical of f)

Rad(f)={z € L| f(z,y) =0forally € L}. (3-21)
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The remainder of this section is devoted to the proof of the following theorem.

Theorem 3.9. If the characteristic of the underlying field is not 2 or 3, then Rad(f) =
Rad(L).

Before proceeding to the proof of this theorem, we prove a few lemmas.
Lemma 3.10. Let J be an ideal of L, and let N := spang{z € £ | © € J}. Then
F(N,J)=0.
Proof Letz € E\J and y € J. Then f(z,y)z = [z, [z,y]] € J,so f(z,y) = 0. O
Lemma 3.11. Let K be a solvable ideal of L. Then £ N K C Rad(f).

Proof Letx € ENK,andlety € €. If y ¢ K, then f(z,y) = 0 by the previous lemma.
If, on the other hand, y € K and f(z,y) # 0, then (z,y) = sls, contradicting that K
is solvable. This implies that f(x,y) = O0forallz € £N K and y € &, completing the
proof as & spans L (Lemma 3.5). ]

Lemma 3.12. We have Rad(L) C Rad(f).

Proof Let K be a solvable ideal of L and letz € K andy € £. If y € K we have
f(z,y) = 0 by Lemma 3.11. If y ¢ K, we have f(x,y) = 0 by Lemma 3.10. O

We denote by SanRad (L) the linear span of all sandwiches of £:
SanRad(L) := {z € £ | ad? = 0}. (3-22)

It is easy to see that SanRad(L) is an ideal of L. Moreover, as the restriction of f to
SanRad (L) is identically zero, we know that SanRad(L) is a nilpotent Lie subalgebra
of L, so SanRad(L) C NilRad(L) (cf [ZKgo] and Lemma 4.2 of [CSUWor1]).

These observations lead to the following chain of inclusions:

SanRad(L) C NilRad(L) C Rad(L) C Rad(f). (3.23)

Lemma 3.13. If z € E\Rad(f) and y € Rad(f), then adfxyy] = 0, provided that
char(F) # 2.

Proof Write X = ad, and Y = ad,. Then we have for z € L, by (P2),

2XYXYz = 2,y [z, [y, 2]
= f(mv [ya [y7 Z]]).’II - f(l', y)[.’l?, [y7 Z]] - f(xv [y? Z])[xay]
= [, 2)f(x,9)z— f(y,2)[z, [y, 2] + fy, [z, 2]) [z, ]
- 0, (3-24)
s02XY XY =0,and XY XY = 0 by the assumption that the characteristic of the field
is not 2. Moreover,

XYz = [fE, [(E, [yv ZH] = f(xv [yv Z])l’ = _f(ya [:L’, Z])l’ =0, (3-25)

so X?Y = 0. Using these equations, we have for ad?w)y]:

adf,,) = (XY -YX)!
= (XYXY - XY?X - YX?Y +YXYVX)?
= (YXYX - XY?X)
= YXYXYXYX -YXYXXY? X - XY?’XYXYX + XY?XXY?X
= Y(XYXY)XYX - YXY(X?’Y)YX - XY?(XYXY)X + XY3(X?Y)Y X
= 0. (3.206)

O
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Lemma 3.14. Let K be an ideal of L, such that K C Rad(f). Then L := L/K is spanned
by extremal elements, with induced form f defined by f(Z,7) := f(z,y) forz,y € L.

Proof Since K € Rad(f), the expression f(z,7) is well-defined for z,y € L. Further-
more, for x € £ and y € L, we have [7,[Z,7]] = f(Z,9) - T = f(x,y) - T, so indeed
z € &(L). O

The proof of the theorem is due to Gabor Ivanyos.

Proof of Theorem 3.9 Recall that Lemma 3.12 states that Rad(L) C Rad(f), so if
Rad(f) C Z(L), there is nothing to prove. Suppose therefore that Rad(f) € Z(L).
We will first show that SanRad (L) # 0.

By Lemma 3.13, there exists a nonzero w € Rad(f) with ad}, = 0. Indeed, if
ENRad(f) # 0, any w € £ N Rad(f) is good enough. Otherwise, if £ N Rad(f) = 0,
take y € Rad(f) and = € & such that [z,y] # 0 (which is possible by the fact that L
is spanned by € and Rad(f) ¢ Z(L)), and use Lemma 3.13 to see that ad}, = 0 if we
take w = [z,y]. Now, if char(F) is not 2 or 3, we have ad> (z) = 0 for any z € L,
by Proposition 2.1.5 of [Kosgo]. Summing up, we have that there exists a nonzero
w € Rad(f) with ad? = 0.

If ad?, = 0, we are done. Otherwise, there exists a b € £ with 2 = ad? (b) # 0. If
b € Rad(f) thenb € Rad(f)N¢&,so[b,[b,c]] =0forallc € L, sob e SanRad(L) and
we are done. So we assume that b € Rad(f). Then, fort € L,

[1‘, [l‘,t]] =

Il
=

] (3-27)

so ad?2 = ad?adjad? (cf Lemma 1.7(iii) of [Beny7]). Since w € Rad(f), we have
ad? (L) C Rad(f). Since b € £\Rad(f), we have ad; (Rad(f)) = 0. This implies that
ad? = 0, so x € SanRad(L). Summing up, we have that SanRad (L) # 0.

The reasoning above shows that if Rad(f) € Z(L), then SanRad(L) # 0, hence
NilRad(L) # 0. But then, using Lemma 3.14 and by induction on the dimension,
Rad(f) must be solvable. This completes the proof of Theorem 3.9. O

Remark 3.15. One of the consequences of this theorem is the following. Suppose we
have a basis B (of dimension n) for a Lie algebra L over the field F generated by ex-
tremal elements, and we calculated (for a given bilinear form f) the n x n matrix M
defined by

We may then view M as a linear map from F™ to F", and calculate its null space
N. There is an obvious one-to-one correspondence between N and Rad(f). Indeed,
suppose that aye; + ... + ape, € N. This implies (by definition) that

ar1f(B1,B)+ ...+ anf(Bn,B) =0, forl =1,...,n,

soa1 f(Br,x)+...+a,f(By,x) =0forallz € L (since B spans L), and by bilinearity
we have
flan By + ...+ a,Bp,z) =0,

soa1 By + ...+ a, B, € Rad(f). The proof in the other direction is similar.
We will use this observation to analyse the structure of various degenerate cases,
for example in Section 6.5.



22 CHAPTER 3. EXTREMAL ELEMENTS

3.4 Generating Semi-Simple Lie Algebras

In this section we assume that we are working over the field IF of characteristic not 2 or
3.

Theorem 3.16. Suppose the semi-simple Lie algebra L, is generated (as a Lie algebra) by n
extremal elements and no fewer, and the semi-simple Lie algebra Lo is generated (as a Lie
algebra) by m extremal elements and no fewer. Then the semi-simple Lie algebra L1 + Lo is
generated by n + m extremal elements and no fewer.

Before giving the proof of this theorem, we prove a small lemma.

Lemma 3.17. Suppose x € Ly is an extremal element in L1. Then x is an extremal element
in Ly + Lo. Moreover, the bilinear form f on Ly coincides with f on L1 + Lo.

Proof Let! € Ly + Lo, and letly € Ly and I, € Ly be such that! = I; + l,. Then
[z, [z,l1]] = f(z,l1)z and f(xz,l2) = 0 since [z, [z, l2]] = 0. We have

[$, [1'7[” = f((E,ll)l’ + 0z = (f(xall) + f(x,lg))(ﬂ = f(mvll + ZQ)I' = f(w,l)x,

so z is indeed an extremal element of L; + Lo. It also follows that f, on L1 + Lo
coincides with f, on L;. Since L; is spanned by extremal elements, the bilinear form
fon Ly + Ly coincides with f on L; as well. O

From this argument it is clear that extremal elements of L, are extremal elements
of Ly + Loy as well.

Proof of Theorem 3.16 Suppose that L, is generated by the extremal elements x4, ..., x,
and L, is generated by the extremal elements y1,...,y,. Welet L = Ly + Lo. Itis
clear that Ly + Lo is generated by z1,...,2Zn,¥1,- - -, Ym, and that these elements are
all extremal. Indeed, for example, [z;, [z, l]] = [z, [v:, azs + Oyi]] = af (@i, x5)x;, for
some «, § € F.

So it remains to prove that L cannot be generated by less than n 4+ m extremal
elements. Suppose to the contrary that L; + Lo is generated by less than n+m extremal
elements. Recall that there exists a set B of extremal elements spanning L1 + Lo. If it
were the case that for all b € B either b € L1 or b € Lo, then B = B; U B>, such that
By C Ly, By C Ly, By N By = 0, and [By, Bz] = 0. Moreover, B; spans L; and By
spans Lo. Now we need n extremal elements to generate Ly, and since these extremal
elements are all in B; and [By, L] = 0, we need m additional extremal elements to
generate L. This contradicts the assumption.

So from now on we assume that there exists a z € B, suchthatz =z +y, z € L4
and y € Ly, and x,y # 0. Suppose L; is spanned by extremal elements z1,...,zxn,
and Lo is spanned by extremal elements y1,...,yy. Then z = a1 + ... + ayzy +
Biyi+ ...+ Buynm. Welett € Ly. Using the the fact that z is extremal and the lemma
above, we find

fetz = [l

= Zaz xu +Zﬂz yza

N
= Zai[z, [2i,t]] + 0

= ZZO@O&J Tj, J?“ +Zzazﬁj Yjs xta ]

=1 j=1 =1 j=1
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N M
= [3;‘, [:Eﬂf“ + Z Zaiﬁj(_[‘xlﬁ [t>yj]] - [t7 [yjﬂxl]])
i=1 j=1
= f(z,t)z+0. (3.28)

The fact that [y,¢] = 0 leads to the observation that f(y,t) = 0 (since f(y,t)y =
[y: [y, 1]] = 0), so

[z 0@ +y) = f(z0)z = flz, )z + [y, D)e = f(z, 1)z,

and since y # 0 we have f(z,t) = 0. Similarly, we find f(z,Ls) = 0. This im-
plies that f(z,L) = 0, so z € Rad(f), and by Theorem 3.9 then z € Rad(L), so
dim(Rad(L)) > 1. This shows that L is not semi-simple, so it cannot be isomorphic to
Ly + Lo. This contradicts the assumption that L can be generated by less than n + m
extremal elements, so we proved the theorem. O

Repeatedly applying this theorem shows that the statement is true for the direct
sum of finitely many simple Lie algebras.



24

CHAPTER 3. EXTREMAL ELEMENTS




Chapter 4

Lie Algebras Generated by Two
Extremal Elements

In this chapter we study Lie algebras generated by two extremal elements, = and y. In
the first section it is shown that such a Lie algebra is in general isomorphic to A;. In
the second section we take a different point of view, and come to the same conclusions.
The first section is taken from [CSUWor1].

4.1 Structure

Theorem 4.1. Let L be a Lie algebra over the field I generated by two extremal elements
x,y € E. Then exactly one of the following three assertions holds:

1. L =TFx + Fy is Abelian, £ = L\{0}.
2. L =Fx +Fy+ Fz, where z = [x,y] # 0, and £ = L\{0}.
3. L = sly and & consists of all nilpotent elements of L.

Proof We define z = [z, y] and distinguish three cases:

o If [z,y] =0
Lemma 3.5 implies that L is spanned by z and y, i.e. L = Fz + Fy. Since
[z,y] = 0 = [y, z], we have that z and y commute, hence L is Abelian. From this
it immediately follows that [v, [v,u]] = 0 = 0 - v for each v € L\{0}, so indeed
& = L\{0}. Furthermore, f is identically 0.

o If [z,y] # 0 and f is identically zero:
We note that z is an extremal element by (P4). Hence, by Lemma 3.5 we have
L = Fx + Fy + Fz. Similar reasoning as above leads to £ = L\{0}. This Lie
algebra is referred to as the Heisenberg-algebra, denoted by b.

o If [z,y] # 0 and f is not identically zero:
Then L is isomorphic with sly. We identify

. 00 . 0 1
xw1th<1 0),yw1th(0 0), (4.1)

and see that [z, y] := zy — yx is equal to:

( oY ) . (4.2)

25
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Furthermore, we prove that £ consists of all nilpotent elements of sls.

— On the one hand, let u € sl(2), u # 0, say u = < Z b > If wis

—a

nilpotent, we have det(u) = 0, hence a? + be = 0.
Now we distinguish two cases. Firstly, if a = 0, then b = 0 or ¢ = 0,
yielding either v € Fy or u € Fx, so u € £. Secondly, if a # 0, then
u = a[r,y] + 6x + ey with € such that e = a2. In that case, too, u € &,
because w is a linear combination of extremal elements.

— Onthe other hand, suppose u is an extremal element, write u = < Z _ba ) .
Then [u, [u, [z, y]]] = ( _ﬁic jzlc) > = au for a certain « € F. This yields
—4bc = aa, 4ab = ab, and 4ac = ac, so a = 4a and a? + be = 0. (Note that
we use the fact that the characteristic of the field is zero here). By the above
a® + be = 0 implies that u is nilpotent.

O

4.2 Classification by Structure Constants

Once we fix the basis of L to be z, y, and [, y], the structure of the resulting Lie algebra
is completely determined by the functions f(z,y) and f(y,z). As noted before, we
have f(x,y) = f(y,x), so for every value we pick for f(z,y) we might have a Lie
algebra. This means we can consider the ‘line’ F as a line of Lie algebras, and wonder
what Lie algebra corresponds to each point on the line. To help us study the structure,
we write down the multiplication table of the basis elements of L in Table B.2.

At the origin (i.e. f(z,y) = 0), we have the case where L = Fz + Fy + Fz (see
Table B.3). On every other point we have sl,, as noted before. Note that we explicitly
demanded that the dimension of the resulting Lie algebra is 3, so here we do not see
the case where [z, y] = 0.



Chapter 5

Lie Algebras Generated by Three
Extremal Elements

In this chapter we study Lie algebras over the field F generated by three extremal ele-
ments z, y, and z. In the first section we show that the dimension of such a Lie algebra
is 8, and in the second section we show that it is in general isomorphic to A,. In the
third section we study the Lie algebra using structure constants. The first two sections
are largely inspired by [CSUWor, Section 5].

5.1 Dimension

In this section we study the Lie Algebra L generated by three extremal elements, z, y,
and z. The five identities in Lemma 3.3 immediately show that

x? y7 Z’ [x7 y]? [y7 2]7 [‘r7 Z}’ [:1;, [y? Z]]? [y7 [fl;, Z]] (S'I)

span L. This implies that L is at most 8-dimensional. It is easily checked that the above
8 elements give a basis in the free case, so dim L = 8.

5.2 Structure

We study the actions of ad, and ad,, on the linear generators of L, and see that they can
be completely described by identities in terms of the four parameters f(z,y), f(z, 2),
f(y, 2), and f(x,[y, z]). We describe these parameters by drawing a triangle with ver-
tices z, y, and z, and labeling the edge zy with ‘edge’ parameter f(x,y), etc, and putting
the ‘central’ parameter f(x, [y, z]) in the middle, with an indication of orientation. See
Figure 5.1.

We will reduce f(z, [y, z]) to zero by transforming the generators, as follows. Let
s € F, and consider the triple z, y, exp(z, s)z. It has the following parameters:

flz,y) = f(z,y)
f(z,exp(z,s)z) = f(z,2) .
f(y,exp(:c, S)Z) = f(ya Z) + Sf(l‘, [y7 Z]) + iszf(x’ y)7 f($7 Z)
f(@, [y, exp(z,8)2]) = f(x]y,2]) —sf(z,y)f(z, 2). (5-2)

Proof For the second parameter, we have

f(;v,exp(m, S)Z) = f(xv Z) + Sf(.f(}, [1‘, Z]) + %SQf(xv [.’L‘, [:L‘, Z]]) = f($7 Z)a (5-3)
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f(x.[y.z])

fty2) ‘
Figure 5.1: The three generator case

and for the third parameter, we have:

Pl ep(as)2) = f(5,2)+ 5w [ 2]) + 55 (0, [, 2])

Fl.2) + 802D + 520 @) (5

For the last parameter, we have

[, [y, exp(z, s)2]) = f(2, [y, 2]) + sf (, [y, [z, 2]]) + %SQf(fv, [y [z, [=,2]]]) ~ (5:5)
The last term is obviously zero, and for the second term, we have
f@ly, [, 20) = = f(y, [2, [2, 2]) = = f (2, 2) f(y, 2) = = f(2,9) f (2, 2).
So indeed f(z, [y, exp(x, 5)2]) = f(=, [y, 2]) — sf(z, y) f (2, 2). O

Clearly, this triple again consists of extremal elements, and generates the same
algebra as z, y, and z. We distinguish two cases:

o If atleast two of the three edges have nonzero labels (say f(z, z) and f(z,y)), we
can transform the central parameter f(x, [y, z]) to zero by a suitable choice of s,

: : _ _flz[y.2])
in this case s = T faa

e If at most one edge has a nonzero label, say f(x,y), and the central parameter
f(z,[y, #]) is also nonzero, we can move to three extremal generators z, y, and
exp(x, $)z with one more edge (i.e. f(y,exp(z,