
Internship at the Technische Universität Berlin

Proving Statements in Planar Geometry
and

Cinderella

Dan Roozemond - 0492344
Eindhoven University of Technology

Department of Mathematics and Computer Science
Discrete Mathematics and its Applications

July - October, 2003





Abstract

This report describes the things done in a three month internship at the Technis-
che Universität Berlin, performed in the summer of 2003. The main goal of this
internship was to make it possible to put forward a geometrical theorem (i.e. a
theorem involving points, lines, conics, incidences, etc) on a computer by pointing
and clicking, and then obtain a computer-generated proof for this theorem.

This goal was achieved, adding various options to the computer program Cin-
derella[4]. With Cinderella one can create geometrical configurations, and the inter-
nal ‘Randomized prover’ is able to discover theorems. In this internship we added
the functionality to find proofs for these theorems with the aid of the computer
algebra package GAP[20]. Communication between these two programs and the
various steps in generating the proof is done by means of OpenMath [12, 15].

Cinderella is now able to generate a mathematically correct proof of certain
theorems created by the user. Moreover, one can verify this proof without extensive
knowledge of the way the proof was obtained. As this internship was performed
as part of the Masters education ‘Discrete Mathematics and its Applications,’ this
report focuses on the mathematics behind the software rather than on the software
itself.

The classic way to automatically prove geometric theorems is via translation
into polynomials, so a thorough explanation of the mathematics involved in doing
so is given in Chapter 3. It then will be shown that the classic way is in this case
simply not the way to go. It will become clear that Gröbner bases are not fit for
proving geometric theorems when the translation into polynomials has to be done
by a computer program. A much faster, but less powerful, alternative is presented
in Chapter 6. This alternative, based on bracket calculations as proposed in [16],
was implemented as an add-on for Cinderella. This functionality originally ini-
tiated the development of Cinderella, but was lost five years ago. Moreover, the
prover made in this internship has the advantage that it uses OpenMath to com-
municate with Cinderella. In Chapter 9 some examples of the prover in action are
given.
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Chapter 1

Introduction

Proof is the idol before whom the pure
mathematician tortures himself.

– Sir Arthur Eddington (1882 - 1944)

The internship covered in this report was conducted in the scope of Automatic
Geometric Theorem Proving. The main goal was to make it possible to put forward a
theorem by pointing and clicking, and then obtain a mathematically sound proof
of that theorem. This goal was achieved by using the following four packages:

Cinderella “Software for doing geometry on the computer, designed to be both
mathematically robust and easy to use” [4].

OpenMath “A new, extensible standard for representing the semantics of math-
ematical objects” [12] - The communication between Cinderella, SINGULAR

and GAP was implemented with OpenMath. This was done using the Riaca
OpenMath library for Java [15].

SINGULAR “A Computer Algebra System for Polynomial Computations” [6].

GAP “GAP – Groups, Algorithms, and Programming” [20].

It was clear that the layout of the project had to conform to Figure 1.1. Although
the first step may seem (and in the case of Cinderella actual is) a rather trivial one,
we do require it. By this, we explicitly disconnect the program creating the geomet-
ric theorem and the program proving that theorem. On the one hand, this enables
us to try different provers without having to change the way Cinderella outputs its
configuration, on the other hand the prover could easily import geometric theo-
rems created in other packages.

The initial layout used can be found in Figure 1.2. In a Bachelor’s project I had
been working on in the spring of 2003 [18], steps 3 and 4 were realized. Having
solved this part of the problem, it looked like the main thing that had to be done
in this internship was the translation from objects in Cinderella (lines, points, etc)
to polynomials, i.e. Steps 1 and 2 from Figure 1.2. As simple as this may seem,
the question remains how to do this in such a way that SINGULAR is able to obtain
an answer in a reasonable amount of time. This question is not easily answered,
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although there has been a lot of research on this topic. It will become clear that
Gröbner bases are not made for proving statements put together by a user, and
translated to polynomial equations by a computer program.

This report starts out with a description of howmathematical objects like points
and lines are represented in Cinderella. Chapters 3 and 4 focus on the well-known
and well-researched field of proving statements in planar geometry using ideals,
Hilbert’s Nullstellensatz and Gröbner bases. In Chapter 5 it will become clear why
this methods are not suitable for proving statements created in Cinderella.

In Chapter 6 a rather different method (using bracket algebra) is proposed, that
certainly has some drawbacks compared to Gröbner bases, but has the advantage
of normally completing its calculations within the lifetime of the person asking
for it. Moreover, the disadvantages are not as big as they might seem, as shown
in Chapter 7. This is the method implemented and incorporated in Cinderella, in
Chapter 8 some notes on this implementation are given. Finally, Chapter 9 shows
some examples of theorems that were proved using this implementation.

Whenever one of the words ‘he’, ‘his’ or ‘him’ is used in this report you can try
to replace it by one of ‘she’ or ‘her’. If the sentence still makes sense, I meant to
include both versions.

Dan Roozemond, October 2003



Chapter 2

Mathematics in Cinderella

In this chapter it is tried to make clear how Cinderella handles mathematics, how
geometry is represented, etc. It is clear that this knowledge is required to success-
fully conduct this project. The information presented here is taken from [9].

2.1 Foundations of Dynamic Geometry

In [9, Chapter 4] a formal framework for Dynamic Geometry is presented. One of
the most important notions is the Relational Instruction Set:

Definition 2.1.1. (Relational Instruction Set (RIS)) A relational instruction set is a
pair (O,Ω) of objects O and primitive operations (or primitives) Ω with the following
properties:

1. O = (O1, . . . , Ok) is a family of sets Oi. These sets partition the objects into
classes of the same type.

2. The primitive operations in Ω are relations

ωi ⊂ (Ox1 × . . .×Oxsi
)×Oxsi+1

with input size ar(ωi) = si. An element of (Ox1 × . . .×Oxsi
) is called input,

Oxsi+1 is called output of ωi

This definition is clarified by the following example:

Example (Projective Geometry) For a projective plane P of points P and lines L let

Join = ω1 := {(p1, p2, l) such that l is the line through p1 and p2 6= p1}

Meet = ω2 := {(l1, l2, p) such that p is the point on l1 and l2 6= l1}

Then (ω1 ⊂ (P × P ) × L and ω2 ⊂ (L × L) × P , and Ω = (ω1, ω2), ((O1 =
P,O2 = L), (ω1, ω2)) is a RIS describing the notions ‘meet’ and ‘join’ in Projective
Geometry. The objects are either a point or a line, all (both) primitives have input
size 2 (s1 = s2 = 2). Furthermore, this RIS is determined, i.e. for a given input
there is at most one possible output.

6



2.2. PROJECTIVE DYNAMIC GEOMETRY 7

Definition 2.1.2. (Geometric Straight-Line Program) A geometric straight-line pro-
gram or GSP on a relational instruction set (O,Ω) is defined by a triple (X, R,Γ):

1. X = (X1, . . . , Xn) are called input variables,

2. R = (R0, . . . , Rm−1) are called output variables or intermediate variables,

3. Γ = (Γ0, . . . ,Γm−1) are called statements.

Every statement Γi is a primitive operation ωji of input size sji and sji pointers to

the input variables u
(i)
1 , . . . , u

(i)
ji
∈ [−n, . . . , i− 2] ∈ Z. The length of the GSP is m.

The notion of geometric straight-line programs is the basis of the way geometry
is modelled in Cinderella. For a brightening example, see [9, p. 43].

2.2 Projective Dynamic Geometry

Chapter 5.1 and 5.2 in [9] describes the way points and lines are internally repre-
sented in Cinderella. This is done by means of homogeneous coordinates.

The points are 1-dimensional linear subspaces ofR3, the lines are 2-dimensional
linear subspaces of R3. Since every 1-dimensional subspace U ⊂ V can be written
as

U = {λx, λ ∈ R}

we can identify points in the real projective plane with antipodal point-pairs
on the unit sphere S2. For lines we can work with the orthogonal complement
of the subspace, which is of course 1-dimensional, and we can identify antipodal
point-pairs with these complements.

Points are represented by three coordinates (x : y : z), not all being zero. For
example, p := (x : y : z) defines a unique subspace of R3 that contains the origin
and p. Since all λ(x : y : z) represent the same subspace (λ 6= 0), and because of
that the same point, we identify scalar multiples, i.e. λ(x : y : z) is identified with
(x : y : z) for all λ 6= 0.

Demanding that at least one of the three coordinates is not equal to zero, means
the points used are in an affine plane in R3.

On first sight this transformation only complicates things: Why not use the
representation (x, y) we are all used to? However, this particular way of represent-
ing points and lines has much advantages in dynamic geometry. For example, to
test if a point is on a line, no matter which representation of the elements, the
scalar product of a line and a point must be zero. This is the case since the two
1-dimensional subspaces must have a non-trivial intersection. Using the same
reasoning we can obtain similar expressions for perpendicularity, collinearity and
concurrency.

The interested reader is encouraged to read Chapter 5 in [9] for a more detailed
description.
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2.3 Randomized Proving

In [9, Chapter 5.3] a way is described to prove geometric theorems automatically
without using symbolic methods like Gröbner Bases. Although this report focuses
on symbolic methods, the (typically slow) symbolic prover will be used on theo-
rems that the (typically fast) randomized prover has determined to be true.

For randomized theorem proving we need the following lemma:

Lemma 2.3.1. (Test Set Lemma) Let Q(x1, . . . , xn) ∈ K[x1, . . . , xn] be a multivariate
polynomial of degree in xi less than or equal to di. Fix finite subsets Si ⊂ K with
|Si| > di. If Q(r1, . . . , rn) = for all (r1, . . . rn) ∈ S1 × . . .× Sn then Q ≡ 0.

We can work with theorems by the following two definitions:

Definition 2.3.2. (Constructive Incidence Statement)AConstructive Incidence State-
ment is a GSP (X, R,Γ) with input size n and length m on a homogeneous RIS
with the following properties:

1. All input variables are of type O1, i.e. they stand for homogeneous vectors.

2. All intermediate results are of type O1, except for Rm−1, which is of type O2.
The variable Rm−1 is called conclusion.

Definition 2.3.3. (Truth of a Constructive Incidence Statement) A Constructive Inci-
dence Statement of length m is true if and only if all instances of it have Rm−1 = 0,
i.e. the polynomial encoded by Rm−1 is the zero polynomial.

With Lemma 2.3.1 we are able to find out whether a Constructive Incidence
Statement is true or not. This is what Cinderella does automatically, although
some optimizations are used to reduce the number of points to be tested.



Chapter 3

Algebraic Proofs

In this chapter it is tried to present some knowledge, skills and tricks that could be
of aid with the eventual implementation of geometric theorem proving using alge-
braic methods. Most of the information on the Gröbner basis algorithm is taken
from [10], the parts on homogeneous ideals are mainly from [1]. This information
should help us to make an implementation in such a way that the Gröbner basis
algorithm is used as efficiently as possible.

3.1 What is a Module?

Later on in this report (when obtaining algebraic proofs) we use modules and ide-
als. Modules are sets with the following properties [10, p. 18]:

Definition 3.1.1. (Module) An R-module M of a ring R is a commutative group
(M,+) with an operation · : R × M 7→ M (called scalar multiplication) such that
∀m ∈ M : 1 · m = m, and the associative and distribution laws are satisfied. A
commutative subgroup N ⊆ M is called an R-submodule if we have R ·N ⊆ N . If
N ⊂ M then it is called a proper submodule. An R-submodule of the R-module R
is called an ideal of R.

Definition 3.1.2. A module can have one or more of the following properties [10,
p. 19]:

1. A set {m1, . . . ,mr} of elements of M is called a system of generators of M
if every m ∈ M has a representation m = f1mλ1 + . . . + fnmλn such that
n ∈ N and fi ∈ R. In this case we write M = 〈m1, . . . ,mr〉.

2. The module M is called finitely generated if it has a finite system of genera-
tors. If M is generated by a single element, it is called cyclic. A cyclic ideal is
called a principal ideal.

3. A system of generators {m1, . . . ,mr} is called an R-basis if every element
m ∈ M has a unique representation as above. If M has an R-basis, it is
called a free R-module.

9



10 CHAPTER 3. ALGEBRAIC PROOFS

4. If M is a finitely generated free R-module and {m1, . . . ,mr} is an R-basis
of M , then r is called the rank of M and denoted by rk(M). The rank of M
is well-defined, since all bases of a finitely generated free module have the
same length.

If the module M is generated by the set G = {g1, . . . , gn} we will write M =
(G) or M = (g1, . . . , gn).

3.2 What is a Gröbner basis?

The text below was inspired by [10, Chapter 0.2], although it can be found in any
book on commutative algebra.

Let

c1(x1, . . . , xn) = 0, . . . , ck(x1, . . . , xn) = 0

be a system of polynomial equations over a certain field, and let t(x1, . . . , xn) = 0
be an additional polynomial equations. How can we decide if t(x1, . . . , xn) = 0
holds for all solutions of the original system of polynomial equations? The problem
can be solved by checking if t is in the ideal I = (c1, . . . , ck), because if t ∈ I , then

t = f1c1 + . . . + fkck (3.1)

and thus for every solution of the system of polynomial equations t = 0.
The problem of checking if t ∈ I is called the Ideal Membership Problem. This is

where Gröbner bases are used: A Gröbner basis is a special system of generators
of the ideal I with the property that the decision whether t ∈ I or not, can be
answered by a simple division with remainder process. From [10, p. 111] we pick
the following characterization of Gröbner basis.

Theorem 3.2.1. (Characterization of Gröbner basis) For a set of elementsG = {g1, . . . , gk} ⊆
P r\{0} which generates a submodule M = (g1, . . . , gk), the following conditions are
equivalent:

1. G is a Gröbner basis of M ,

2. For every element m ∈ M\{0}, there are f1, . . . , fk ∈ P such that m =∑k
i=1 figi,

3. For an element m ∈ P r we have that the remainder on division of m by G is
equal to zero if and only if m ∈ M ,

4. The set {lt(g1), . . . , lt(gk)} generates the P -submodule lt(M) of P r, where lt(f)
denotes the leading term of f .

There is an explicit algorithm which allows us to find a Gröbner basis of an
ideal I , starting with any set of generators of I . This algorithm is called Buch-
berger’s Algorithm [10, p. 123, 125].
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3.3 Geometric Theorems and Ideals

Definition 3.3.1. (Geometric Theorem) We will express a geometric theorem as
follows, in the ring R = K[x1, . . . , xn]:

• The configuration is expressed as polynomial equations c1 = 0, . . . , cn = 0,
where ci ∈ R,

• The thesis is expressed as polynomial equation t = 0, where t ∈ R.

(Truth of a Geometric Theorem)We will say our thesis holds if:

∀(x1, . . . , xn) ∈ Kn : c1(x1, . . . , xn) = . . . = cn(x1, . . . , xn) = 0 : t(x1, . . . , xn) = 0.
(3.2)

In words: All instances that meet the polynomial equations describing the con-
figuration, should meet the polynomial equation describing the thesis. It appears
this can be checked using ideals, as is explained in [10, Section 2.6].

Definition 3.3.2. (Zeroset) Let K ⊂ L be a field extension, let K be the algebraic
closure of K, and let P = K[x1, . . . , xn].

a) An element (a1, . . . , an) ∈ Ln (a point of Ln) is said to be a zero of a polyno-
mial f ∈ P in Ln if f(a1, . . . , an) = 0. The set of all zeros of f in Ln will be
denoted by ZL(f).

b) For an ideal I ⊆ P , the set of zeros or zeroset of I in Ln is defined as

ZL(I) = {(a1, . . . , an) ∈ Ln|∀f ∈ I : f(a1, . . . , an) = 0}.

The set of zeros of I in K
n
will be denoted by Z(I).

Using sets of zeros of ideals we can find the exact requirements needed for a
geometric theorem to hold in the sense of Definition 3.3.1.

Theorem 3.3.3. (Weak Nullstellensatz) Let K be a field, and let I be a proper ideal of
P = K[x1, . . . , xn]. Then Z(I) 6= ∅.

Proof Let K be the algebraic closure of K, and let P = K[x1, . . . , xn]. Then
IP is a proper ideal of P . Furthermore, IP is contained in some maximal ideal
J of P , because P is Noetherian. By [10, Corollary 2.6.9] there exists a point
(a1, . . . , an) ∈ K

n
such that J = (x1 − a1, . . . , xn − an). Hence, (a1, . . . , an) is a

zero of J , so (a1, . . . , an) is a zero of I ⊆ IP ⊆ J . �

Corollary 3.3.4. Let L be a field which contains the algebraic closure of K, and let I be
an ideal of K[x1, . . . , xn]. Then we have the following equivalence relation:

ZL(I) = ∅ ⇔ 1 ∈ I.

Proof The “⇐” is clear. For the “⇒” we observe that ZL(I) = ∅ implies Z(I) = ∅,
so (by the Weak Nullstellensatz) I is not a proper ideal, so 1 ∈ I . �
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Definition 3.3.5. (Radical Ideal) Let R be a ring, and I an ideal in R. The set
√

I := {r ∈ R|ri ∈ I for some i ≥ 0}

is again an ideal of R. This ideal is called the radical of I . An ideal I such that
I =

√
I is called a radical ideal.

If I is an ideal of K[x1, . . . , xn] it is clear that I and
√

I have the same set of
zeros.

Definition 3.3.6. (Vanishing Ideal) Let K ⊆ L be a field extension, let S ⊆ Ln.
Then the set of all polynomials f ∈ K[x1, . . . , xn] such that f(a1, . . . , an) = 0 for
all points (a1, . . . , an) ∈ S forms an ideal of the polynomial ring K[x1, . . . , xn].
This ideal is called the vanishing ideal of S and is denoted by I(S).

Theorem 3.3.7. (Hilbert’s Nullstellensatz) Let K be an algebraically closed field, and let
I be a proper ideal of K[x1, . . . , xn]. Then

I(Z(I)) =
√

I.

Proof The proof consists of two parts.

• “I(Z(I)) ⊇
√

I”: Suppose f ∈
√

I , so f t ∈ I for some t ∈ N. By definition,
for every a ∈ Z(I) we have f t(a) = 0, so we have f(a) = 0 for all a ∈ Z(I),
so f ∈ I(Z(I)).

• “I(Z(I)) ⊆
√

I”: Assume I 6= (0), and define the ring P = K[x1, . . . , xn].
Choose f ∈ I(Z(I))\{0}, and a system of generators {g1, . . . , gk} of I . Let
y be a new indeterminate and consider the ideal I ′ = IP [y] + (yf − 1) in
the ring P [y]. Now suppose the point (a1, . . . , an, b) is in Z(I ′), then we
have bf(a1, . . . , an) = 1 and gi(a1, . . . , an) = 0 for i = 1, . . . , k. But then
(a1, . . . , an) ∈ Z(I) and f(a1, . . . , an) 6= 0, which is a contradiction with
the choice of f . This means we cannot choose such a point in Z(I ′), which
means Z(I ′) = ∅. By the Weak Nullstellensatz we know 1 ∈ I ′, and by
theorem 3.3.8 we now have f ∈

√
I .

�

Now suppose we have a configuration as described in Definition 3.3.1. Observe
the ideal I = Q(c1, . . . , ck). We write X for (x1, . . . , xn). By Definitions 3.3.2, 3.3.5
and 3.3.6 and Theorem 3.3.7 we know that the following expressions are equivalent:

• t ∈
√

I ,

• t ∈ I(Z(I)),

• t(X) = 0 for all points X ∈ Z(I),

• t(X) = 0 for all points X for which c1(X) = . . . = cn(X) = 0,

• The theorem holds in the sense of Definition 3.3.1.



3.3. GEOMETRIC THEOREMS AND IDEALS 13

So the theorem can be proven if we can decide whether t ∈
√

I . We have the
following theorem to help us make that decision:

Theorem 3.3.8. Let I be an ideal in K[x1, . . . , xn], and let f ∈ K[x1, . . . , xn]. Then
the following equivalence holds:

f ∈
√

I ⇔ 1 ∈ (f1, . . . , fk, zf − 1) (3.3)

where (f1, . . . , fk, zf−1) is an ideal in K[x1, . . . , xn, z] and z is a new indeterminate.

Proof This proof was taken from [19] and adapted.

• “⇒”. Let f ∈
√

I , so fm ∈ I for some m ∈ N. So

zmfm ∈ I ⊆ (f1, . . . , fk, zf − 1) ⊆ K[x1, . . . , xn, z],

and

1−fmzm = (1−fz)(1+fz+. . .+(fz)m−1) ∈ (zf−1) ⊆ (f1, . . . , fk, zf−1),

so
1 = 1− fmzm︸ ︷︷ ︸

∈(f1,...,fk,zf−1)

+ fmzm︸ ︷︷ ︸
∈(f1,...,fk,zf−1)

∈ (f1, . . . , fk, zf − 1).

• “⇐” Let 1 ∈ (f1, . . . , fk, zf − 1). Then:

1 = α1f1 + . . . + αkfk + α(zf − 1), where αi, α ∈ K[x1, . . . , xn, z].

We proceed to K[x1, . . . , xn, z] and substitute: z := 1
f . We obtain:

1 = α′1f1 + . . . + α′kfk

Both sides are multiplied by f t, where t is the maximum power of z that
occurs in αi, α. We obtain

f t = β1f1 + . . . + βkfk

where βi ∈ K[x1, . . . xn], so f t ∈ I and f ∈
√

I .

�

The second part of the proof is illustrated by the following example.

Example Observe the ideal I = (x2 + y, y2) ⊂ Q[x, y]. We want to know if the
polynomial f(x, y) = x is in

√
I . Following Theorem 3.3.8 we proceed to the ideal

J = (x2 + y, y2, fz − 1) in Q[x, y, z]. We find 1 ∈ J , because

1 = (z2 − yz4) · (x2 + y) + z4 · y2 + (xyz3 + yz2 − xz − 1) · (fz − 1).

As described in the proof above, we substitute z := 1
f and multiply both sides by

f4, i.e. replace zi by f4−i. Observe how the last term (always!) falls out and we
obtain

f4 = (f2 − y) · (x2 + y) + 1 · y2,

which shows indeed f ∈
√

I and even gives a proof of that assertion.
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Now the problem remains how to find out if t ∈
√

I . As stated in [10, p. 114]:

Lemma 3.3.9. (Ideal Membership) Let I be an ideal in K[x1, . . . , xn], B a Gröbner
basis of I and f ∈ K[x1, . . . , xn]. Then the following holds:

f ∈ I if and only if the remainder on divisien of f by B is 0.

Remark 3.3.10. In practice, testing if f ∈ I = (c1, . . . , ck) often suffices. That is
why we will focus on that particular demand for now, especially while the advan-
tages of homogeneity (as described in Section 3.6) are lost when proceeding to the
ideal (c1, . . . , ck, zf − 1).

Summarizing this section, we have the following lemma to test if a geometric
theorem holds:

Lemma 3.3.11. (Testing if a Geometric Theorem holds) A geometric theorem given by
configuration polynomials c1, . . . , ck and thesis polynomial t holds if the remainder on
division of t by B is equal to zero, where B is a Gröbner basis of the ideal generated by
(c1, . . . , ck). Moreover, that theorem holds if and only if the remainder on division of 1
by B′ is equal to zero, where B′ is a Gröbner basis of the ideal generated by (B, zt− 1),
where z is a new indeterminate.

3.4 Obtaining a Certificate by Modules

We would like to be able to find the fi from Definition 3.3.1, as these can serve as
some kind of certificate to prove the correctness of what we have calculated. The
verification of t = f1c1 + . . . + fncn is straightforward and does not require any
knowledge on the procedure used to obtain the proof. One of the advantages of
this ‘certificate’ is that any calculation or algorithm can be used, as long as correct
fi are returned. This enables us to use tricks we cannot prove to be mathematically
correct, or make assumptions that we cannot prove to be satisfied. As long as we
return a correct set (f1, . . . , fn) we can do whatever we like.

Throughout this section we assume the thesis holds, so

∃f1, . . . , fn : t = f1c1 + . . . + fncn.

One way to obtain these fi is by means of modules.

Algorithm 3.4.1. Again, the configuration is given by polynomial equations c1 =
. . . = cn = 0 and the thesis is given by the polynomial equation t = 0.

1. Define the polynomial vector di ∈ Rn+1 by di = cie1 − ei+1, where i =
1, . . . , n,

2. Define the module M = (d1, . . . , dn) ⊂ Rn+1,

3. Calculate a Gröbner basis B of M ,

4. Calculate the remainder r ∈ Rn+1 on division of te1 by B, where the order-
ing should be such that ei > ei+1,
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5. Since t = f1c1+. . .+fncn we have r = (0, h1, . . . , hn) for certain h1, . . . , hn ∈
R.

Theorem 3.4.2.
t = h1c1 + . . . + hncn

Proof Let i ∈ {1, . . . , n}. Then di = cie1 − ei+1 ∈ M , so ei+1 = cie1 mod M .
Now te1 ≡ r mod M , so te1 ≡ (0, h1, . . . , hn) ≡ h1e2 + . . . + hnen+1 ≡

h1c1e1 + . . . hncne1, so t = h1 + . . . + hn. �

So by means of modules we can obtain the certificate. The major drawback of
this method is that it tends to be very slow when adding equations, as M ⊂ Rn+1.

3.5 The Extended Buchberger Algorithm

It appears to be possible to obtain a certificate without the need to use modules.
Again, we assume that the thesis holds.

Algorithm 3.5.1. Again, the configuration is given by polynomial equations c1 =
. . . = cn = 0 and the thesis is given by the polynomial equation t = 0.

1. Define the ideal I = (c1, . . . , ck),

2. Using the extended Buchberger Algorithm [10, p. 125], find a Gröbner basis
G = (g1, . . . , gt) and a n× t-matrix A = (aij) such that

gj = a1jc1 + . . . + anjcn for j = 1, . . . , t. (3.4)

3. Divide t by G and obtain remainder 0 (by the assumption that the thesis
holds) and h1, . . . , ht ∈ R such that t = h1g1 + . . . + htgt,

4. Define fi = h1ai1 + . . . + htait, for i = 1, . . . , n.

Theorem 3.5.2. At the end of this algorithm the following relation between t and the fi,
as defined above, holds:

t = f1c1 + . . . + fncn,

which means these fi are the certificate required.

Proof

t = h1g1 + . . . + htgt

= (use Equation 3.4)
= h1(a11c1 + . . . + an1cn)
+ . . .
+ ht(a1tc1 + . . . + antcn

= f1c1 + . . . + fncn.

�
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So the certificate can be obtained by Algorithm 3.5.1 without the use of mod-
ules.

There is another way to obtain a certificate: By use of the division command
in SINGULAR. The documentation does not make clear how this function works,
but it does make it possible to obtain the certificate without any additional pro-
gramming. One should expect it to use the Extended Buchberger algorithm, since
that algorithm does not really slow the process down.

When testing, it appears that this is not the case. There are examples where
the calculation of the Gröbner basis of the ideal I = (c1, . . . , ck) and t ∈ I is done
within a second, but the division of t by c1, . . . , ck takes much longer.

3.6 Homogeneous Ideals

In order to fully understand the notion of homogeneous polynomials and ideals
we define them rather precisely, unfortunately that might make this section a bit
harder to read. Most of the text below is taken from [1, p. 466-476] and [5, p. 252-
254], although adjusted on occasion. For the remainder of this section, K will be a
field, the ring R is equal to K[x1, . . . , xn] and T is the set of terms in the variables
x1, . . . xk.

Definition 3.6.1. (Grading) A grading Γ of K[x1, . . . , xn] is a monoid homomor-
phism

Γ : (T, 1, ·) 7→ (N, (0),+),

i.e. a map Γ : T 7→ N such that Γ(1) = 0 and Γ(s · t) = Γ(s)+Γ(t). For f ∈ R,
f 6= 0, the Γ-degree of f is defined as

max{Γ(t)|t ∈ T (f)}.

By abuse of notation, the Γ-degree of f is denoted by Γ(f). By K[x1, . . . , xn][d1,d2]

we denote the set of polynomials with the property d1 ≤ Γ(f) ≤ d2.

Definition 3.6.2. (Homogeneous Polynomial) A non-zero polynomial f ∈ R is
called Γ-homogeneous if Γ(s) = Γ(t) for all terms s, t ∈ T (f).

Example Let α1, . . . , αn ∈ N and define Γ : T 7→ N by

Γ(xa1
1 · . . . · xak

k ) = a1α1 + . . . + akαk.

Taking α1 = . . . = αk = 1 yields the grading by total degree, so Γ(f) is really deg(f).

It appears we can speed up the Gröbner basis calculation when working with
homogeneous ideals. We define the following modification of the standard Gröb-
ner basis algorithm (called GRÖBNER in this context):

Definition 3.6.3. ([d1, d2]-GRÖBNER) The algorithm [d1, d2]-GRÖBNER is the al-
gorithm GRÖBNER with the sole modification that it considers only those critical
pairs {g1, g2} that satisfy

d1 ≤ Γ(lcm(lt(g1), lt(g2))) ≤ d2.
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A d-Gröbner basis (d ∈ N) is defined to be a finite subset of K[x1, . . . , xn]
consisting of homogeneous polynomials that satisfies the equivalent conditions as
stated in [1, p. 472], the most important of which is

“The remainder on division of f by G is zero for all f ∈ (G) ∩K[x1, . . . , xn][0,d]”.

We will apply this algorithm in the following setting. If f ∈ K[x1, . . . , xn] and
d ∈ N then we denote by f(d) the sum of all monomials of f whose Γ-degree equals
d. It is clear that either f(d) = 0 or f(d) is homogeneous with Γ(f(d)) = d. In the
latter case, f(d) is called the d-homogeneous part of f .

Definition 3.6.4. (Homogeneous Ideal) An ideal I of K[x1, . . . , xn] is called ho-
mogeneous if f(d) ∈ I for all f ∈ I and d ∈ N.

We have the following properties of homogeneous ideals:

Theorem 3.6.5. 1. Suppose F ⊆ K[x1, . . . , xn] and all f ∈ F are homogeneous
polynomials. Then the ideal I generated by F is homogeneous,

2. Every homogeneous ideal I ⊆ K[x1, . . . , xn] has a finite basis consisting of ho-
mogeneous polynomials.

Proof 1. Let the polynomial g ∈ I . Then g =
∑r

i=1 mifi, where fi ∈ F and mi

a monomial in K[x1, . . . , xn]. then for d ∈ N:

g(d) =
r∑

i=1

{mifi|1 ≤ i ≤ r, Γ(mifi) = d},

so g(d) ∈ I , and by Definition 3.6.4 I is homogeneous.

2. Suppose I ⊆ K[x1, . . . , xn] is an ideal. We already know that there exists a
finite set P of polynomials (not necessarily homogeneous) in K[x1, . . . , xn]
such that I = (P ). Let F = {p(d)|p ∈ P, d ∈ N}. Then F is finite, every
f ∈ F is of course a homogeneous polynomial, and F ⊆ I .

Moreover: Let h ∈ I . Then, because P is a basis for I , the polynomial
h =

∑
hipi, for some hi ∈ K[x1, . . . , xn], so h =

∑
hi(

∑
jifi) for some ji,

so F is a basis of I .
�

A d-Gröbner basis of an ideal I is of course a d-Gröbner basis G such that the
ideal I is generated by G. If I is a homogeneous ideal and d ∈ N, then I has a
finite basis F of homogeneous polynomials and, and [0, d]-GRÖBNER(F ) is then
a d-Gröbner basis of I .

It is even possible to make a connection between d-Gröbner bases and standard
representations, but we will not need to go that far. The degBound directive in SIN-
GULAR implements a form of the [0, d]-GRÖBNER-algorithm. It makes the whole
algorithm considerably faster, in a certain test case the calculation took tenths of a
second instead of more than half an hour.



Chapter 4

Translating Polynomials

There are, of course, numerous ways to translate a given configuration in the plane
into polynomials. There is however a certain structure we wish to use. This makes
the process clear and the intermediate results usable in other situations. This is
made possible by OpenMath.

4.1 The OpenMath Standard

The OpenMath standard is intended for representing mathematics in such a way
that mathematical objects can easily be exchanged between computer programs.

OpenMath is an emerging standard for representing mathemati-
cal objects with their semantics, allowing them to be exchanged be-
tween computer programs, stored in databases, or published on the
worldwide web. While the original designers were mainly developers
of computer algebra systems, it is now attracting interest from other
areas of scientific computation and frommany publishers of electronic
documents with a significant mathematical content. [12, Overview]

A rough overview of the standard can be found in Figure 4.1. The 3 layers are
explained as follows:

[Language] The OpenMath language defines the ‘grammar’. It defines notions
like Variables, Constants, Errors, and Functions.

[Content Dictonaries] A Content Dictionary (CD) is (or can be) defined for each
area of Mathematics. For example the ‘arith1’ CD describes the notions of
‘minus’, ‘plus’, ‘power’, etc.

[Phrasebooks] A Phrasebook provides communication between OpenMath and
another program. Phrasebooks exist for, for example, Mathematica, GAP
and SINGULAR. A specific Phrasebook consists of three parts:

• An encoder to encode OpenMath objects into commands that the pro-
gram understands,

• A decoder to translate program output into OpenMath objects,

18
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Content Dictionaries

Language

Algebra Integer Linear Algebra … …

Phrasebooks

GAP Singular Mathematica … …

Figure 4.1: The OpenMath
framework

Cinderella

Configuration

OpenMath

Configuration

Coordinatized configuration

Singular

Polynomial equations

Theorem is True or False

1

2

3

5

Polynomial equations

4

Figure 4.2: The chain of trans-
lations

• The physical communication between the program and the Java (or C,
or C++) program containing the OpenMath objects.

The interested reader is encouraged to have a look at
http://www.openmath.org for an extensive overview of the OpenMath standard.

4.2 The plangeo CoDec

In the (experimental) plangeo codec [13] a way is proposed to encode a configu-
ration in the plane into polynomials. Moreover, the extended_in in the polygb2
codec [14] enables us to represent the set of polynomials in a convenient way, be-
fore translating them to SINGULAR. This is also the OpenMath object that was
used in my Bachelor’s project [18].

The initial layout from Figure 1.2 was slightly changed to conform to the
plangeo-codec, see Figure 4.2. Thus, we create the following chain of translations:

1. Cinderella: A configuration described by points and lines, some objects may
have coordinates,

2. OpenMath: A configuration described by points and lines, as in plangeo,
some objects may have coordinates,

3. OpenMath: A configuration described by points and lines, as in plangeo, all
objects have coordinates,

4. OpenMath: A set of polynomials describing the ideal and the polynomials to
be tested,

5. SINGULAR: A set of commands describing the polynomials, the ideal and
the polynomials to be tested,

6. SINGULAR: True or false, including a proof if true.
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The following OpenMath objects are used:

Step 2 An OpenMath Application with head symbol plangeo1.assertion,

Step 3 An OpenMath Binding with head symbol fns1.lambda and as bound vari-
ables the coordinates that had to be added to make the configuration coordi-
natized. The body of the Binding is the plangeo1.assertion from the pre-
vious step, where an Application with head plangeo4.set_coordinates is
added to the points and lines that did not have coordinates,

Step 4 AnOpenMath Application with head symbol polygb2.extendend_in, and
as variables the bound variables from the Binding in the previous step. The
configuration polynomials are generated from the plangeo1.configuration
that is contained in the plangeo1.assertion, as is the thesis polynomial.

This repeatedly translating of the configuration may seem a bit overdone, in
practice it helps us to make an implementation that is robust and easy to under-
stand. Moreover, the intermediate results can be used by other applications, and
other applications can use the single steps we created.



Chapter 5

Gröbner Bases in Practice

5.1 The Triangle

This chapter started out as a demo of how things should go, but it ended up as
a demo of how things can go wrong. Suppose we want to prove that the three
medians of a triangle go through one point. In this section, we will not work
with homogeneous coordinates yet, to make the formulas look more familiar. The
configuration is created as follows (Figure 5.1):

1. Choose points A, B, and C,

2. D is half-way between A and B (c1, c2),

3. E is half-way between B and C (c3, c4),

4. F is half-way between A and C (c5, c6),

5. d is the line through B and F (c7, c8),

6. e is the line through C and D (c9, c10),

7. f is the line through A and E (c11, c12),

8. G is the intersection of d and e (c13, c14).

a

b

c

d

e

f

A

B

C

D

E
F

G

Figure 5.1: The medians of a triangle
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c1 = pA1 + pB1 − 2 · pD1 c9 = le1 · pC1 + le2 − pC2
c2 = pA2 + pB2 − 2 · pD2 c10 = le1 · pD1 + le2 − pD2

c3 = pC1 + pB1 − 2 · pE1 c11 = lf1 · pA1 + lf2 − pA2

c4 = pC2 + pB2 − 2 · pE2 c12 = lf1 · pE1 + lf2 − pE2

c5 = pC1 + pA1 − 2 · pF1 c13 = ld1 · pG1 + ld2 − pG2

c6 = pC2 + pA2 − 2 · pF2 c14 = le1 · pG1 + le2 − pG2

c7 = ld1 · pB1 + ld2 − pB2

c8 = ld1 · pF1 + ld2 − pF2 t = lf1 · pG1 + lf2 − pG2

Table 5.1: The system of polynomials

Our hypothesis t is, of course, that G lies on f . The translation into polynomi-
als can be found in Table 5.1. Variables starting with a ‘p’ denote points, variables
starting with a ‘l’ denote lines.

It appears that t is not in the ideal generated by c1, . . . , c14. Obviously, this does
not mean the theorem is false. It does mean that we failed to translate the theorem
into polynomials in such a way that the truth of the theorem can be proved. In
practice, this kind of behaviour occurs because of degenerations. For example, a
line through the A and B is not correctly defined if A = B. A common way to fix
this is adding 3 equations (c15, c16, c17) to tell A 6= B 6= C 6= A, of the form

c15 = (pA1 − pB1) ∗ z1 − 1,

where z1 is a new ring variable. Obviously, if pA1 = pB1, the polynomial c15

will never evaluate to zero. By doing this, we (so to say) explicitly removed the
situations where pA1 = pB1 from the configuration. Sadly, this does not work in
this case.

Another situation we might want to avoid is when A, B, and C are on one line.
This can be done by adding a line z through A and B, where C should not be on
(again, we add c15, c16, c17):

c15 = lz1 · pA1 + lz2 − pA2,
c16 = lz1 · pB1 + lz2 − pB2,
c17 = (lz1 · pC1 + lz2 − pC2) · z − 1,

where lz1, lz2, and z are new variables. The SINGULAR session that tells us whether
t ∈ I (the declaration of the polynomials is omitted):

> ideal i = (c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17);
> reduce(t,groebner(i));
0

It appears that we found a proof for this theorem. Unfortunately, this is a pretty
ad-hoc way of solving things, and that is not something desirable (nor achievable)
in the eventual solution.



5.2. PAPPOS’ THEOREM - 1 23
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Figure 5.2: Pappos’ theorem

5.2 Pappos’ Theorem - 1

In the following sections two different methods of representing Pappos’ theorem
will be presented. The encoding is done in such a way that it is possible to create an
algorithm that generates these polynomials from a configuration that was drawn by
a user. The purpose of these sections is to make clear how a certain configuration
can be encoded, and to demonstrate the problems encountered.

The configuration we will be observing is shown in Figure 5.2, which was cre-
ated in Cinderella. The thesis is, of course, that lines g, h, and k go through one
point. We notice that this theorem only uses the Join and Meet, as defined in
Section 2.1. We recall their ‘loose’ definitions:

• a is Join(A,B): The line a is the line through the points A and B,

• A is Join(a, b): The point A is the point where the lines a and b meet.

The algorithm by which the configuration from Figure 5.2 was created can be
found in Section A.1.

We will use the representation of points and lines in homogeneous coordinates
as described in Section 2.2, as that gives us homogeneous polynomials, with all
the advantages from Section 3.6. The most important result from those sections
is that a point is on a line if and only if the scalar product of their coordinates is
zero. In the equations that follow, a point A is denoted by the three coordinates
(pAx, pAy, pAz), a line a is denoted by (lax, lay, laz). Thus, the algorithms called
Join and Meet are encoded as follows:

a := Join(A,B) The point A is on the line a, and so is the point B:

pAx · lax + pAy · lay + pAz · laz = 0,
pBx · lax + pBy · lay + pBz · laz = 0. (5.1)
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A := Meet(a,b) The point A is on the line a, and on the line b:

pAx · lax + pAy · lay + pAz · laz = 0,
pAx · lbx + pAy · lby + pAz · lbz = 0. (5.2)

The thesis that the lines g, h, and k go through one point is encoded by adding
a point K = Meet(h, k) and describing the incidence of the point K and the line g
in the thesis polynomial. The 26 equations describing the configuration we obtain
can be found in Section B.1. The polynomial describing the thesis is:

t = lgx · pKx + lgy · pKy + lgz · pKz. (5.3)

At this point in time we have all the ingredients we need to test the thesis with a
computer algebra package, for example SINGULAR. As the polynomials c1, . . . , c26

and t are homogeneous with degree 2, we can use a 2-Gröbner basis G of the
(homogeneous) ideal generated by (c1, . . . , c26). This is done in a split second, but
the remainder r on division of t by G is not equal to zero, so we do not have a proof
yet.

Looking at the equations carefully, we see that the exact thing that helps us
when obtaining the Gröbner basis, the homogeneity, now stops us from proving
the theorem. Suppose all variables are set to 0, except lgx and pKx are set to 1.
The fact that the polynomials are homogeneous makes this a valid instance of the
configuration, c1 = . . . = c26 = 0. However, the thesis polynomial t is not equal
to 0. This explains why r 6= 0. This problem can be solved by demanding that for
every point and every line the first coordinate (x) should be not-zero. Remember
that in Euclidian geometry this is no real restriction. Since all theorems can be
moved around freely in the plane, it is always possible to move the configuration
away from these critical positions. There are two ways to add these constraints to
our model.

Firstly, we can try to add 18 polynomials (9 for the points, 9 for the lines) to
the configuration. These polynomials are of the form di =??x · zi − 1. Obviously,
when pAx is equal to zero, d1 can never be equal to zero. Thus, we removed the
instances where pAx is zero explicitly from the configuration. However, we now
have an ideal generated by 26 + 18 = 44 polynomials, and at the same time we have
lost the possibility to use all the beautiful tools we have for homogeneous ideals.
The combination of these two factors makes sure the Gröbner basis calculation is
too slow.

Secondly, we can try to add 18 factors to the thesis-polynomial, thus testing if
pAx · pBx · . . . · lkx · t is in the ideal generated by c1, . . . , c26. If it is, we know that
if the first coordinate of each variable is not equal to zero, the thesis polynomial t
must be equal to zero, so our thesis holds. However, the polynomial for which we
want to know if it is in (c1, . . . , c26) now has degree 18 + 2 = 20. This means we
need a 20-Gröbner basis instead of a 2-Gröbner basis, and again, this is too much
to ask for. The calculation in SINGULAR fails because it runs out of memory.

It appears this set of polynomials does not give us a proof of Pappos’ theorem.
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5.3 Pappos’ Theorem - 2

As stated in Section 2.1, three points A, B, and C are collinear if and only if the
determinant ∣∣∣∣∣∣

pAx pBx pCx

pAy pBy pCy

pAz pBz pCz

∣∣∣∣∣∣
is zero. This can dramatically reduce the amount of polynomials needed to de-
scribe a configuration. As shown in section 8.1 it is possible to obtain a list of
collinearity conditions from an algorithm such as the one in Section A.1.

In the case of Pappos, the entire configuration can be described by just 8 (ho-
mogeneous!) polynomials. Looking at Figure 5.2, we see that the following triplets
of points are collinear: ABF , EGD, EFH , CDF , AHG, GCB, AKD, andEKB.
The thesis is that the points H , K, and C are collinear. The configuration polyno-
mials can be found in Section B.2, the thesis polynomial is:

t = pHx · (pKy · pCz − pCy · pKz)
− pKx · (pHy · pCz − pCy · pHz)
+ pCx · (pHy · pKz − pKy · pHz). (5.4)

Again, since c1, . . . , c8 are homogeneous with degree 3, and t has degree 3,
we can calculate a 3-Gröbner basis G of the ideal I generated by (c1, . . . , c8). The
remainder on division of t by G is not equal to zero. Again, there is some kind of
situation that meets the configuration, but does not meet the thesis.

However, the situation is much more complicated here than in the previous
section. Demanding that the first coordinate of all the variables is not equal to
zero does not suffice: For example, set all the first coordinates to 1, and second
and third to 0, except for pKy and pCz . Again, all the configuration equations are
met, but the thesis polynomial is not. This particular type of degeneration makes it
hard to come up with the required additional polynomials, let alone the evaluation
in SINGULAR, which will probably be just as slow as in the previous section.

This is a problem that occurs every time we try to prove a theorem without any
optimizations made by a person. Articles exist where the authors succeeded in
proving a lot of geometrical theorems with the aid of Gröbner bases, for example
[2, 3, 7, 8, 11]. Unfortunately, in all these articles the geometry theorems tested were
translated into polynomials by hand. This gives one the possibility to create a ‘good’
translation, for example rotate and scale the configuration in such a way that one
point is the origin and another point is on the x-axis. One could also exploit certain
symmetries in the configuration or make generalizations that simplify the result-
ing polynomials. All these optimizations can only be done by a person, preferably
a mathematician, looking at the configuration and encoding it in an efficient way.
This is something that can not be done by a computer program.



Chapter 6

Projective Geometry

As shown in the previous chapter, Gröbner Bases are simply too slow to efficiently
automatically prove geometric theorems. In this chapter we restrict ourselves to
geometric theorems that are invariant under projective transformations, based on
a paper by Jürgen Richter-Gebert in 1995 [16]. This means we only consider con-
figurations and theses of the form:

• The three points A, B, and C lie on one line (the points A, B, and C are
collinear), denoted by ‘h(A,B, C)’,

• The three lines through A and B, C and D, and E and F , respectively, go
through one point, denoted by ‘m((A,B), (C,D), (E,F ))’,

• The six points A, B, C, D, E, and F lie on one conic, denoted by
‘c(A,B, C, D, E, F )’.

Remark 6.0.1. It suffices to observe cases where, for example, all collinearity con-
ditions are given by three points. In the case that four or more (say N ) points are
on one line, we simply add the

(
N
3

)
possible collinearity conditions on three points

to the configuration.

In the mathematical foundation in this chapter parts from the masters thesis
by one of Jürgen Richter-Gebert’s students, Andreas Umbach, were consulted [22].

The properties above are all invariant with respect to some group of linear
transformations, which enables us to use bracket algebra [21, Chapter 3]. We again
observe the homogeneous coordinates in the plane. This means the coordinates
are in (R3\{0})/R\{0}, in words: all scalar multiples of a vector denote the same
point. We will denote the determinant∣∣∣∣∣∣

xA xB xC

yA yB yC

zA zB zC

∣∣∣∣∣∣
corresponding to the points A, B, and C by [ABC]. This notation is referred to as
the bracket notation, a determinant [ABC] as a bracket.

26
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6.1 Collinearity

First, we focus on the collinearity conditions, described by h(A,B, C). As stated in
Section 2.2 three points A, B, and C are collinear if and only if [ABC] = 0. This
fact is made clear by the observation that

[ABC] = 0 ⇔

 xA

yA

zA

 = λ

 xB

yB

zB

+µ

 xC

yC

zC

 ⇔ A,B, and C are collinear.

To create a proof (as shown in the next section) we need to make a connec-
tion between several conditions. This can be done using the following theorem.
In order to make reading easier, we write k for the point defined by coordinates
(xk, yk, zk)T .

Theorem 6.1.1. Let 1, 2, 3, 4, and 5 be 5 points in the plane, such that 1, 4, and 5 are
not collinear. Then the following equivalence holds:

[123] = 0 ⇔ [124][135] = [125][134]

Proof The bracket is a 3-linear alternating form: Observe

a = [123][145]− [124][135] + [125][134].

Fix 1 in a. Then a is a 4-linear alternating form on {2, 3, 4, 5}. Check for
example what happens if we swap 3 and 5:

a′ = [125][143] −[124][153] +[123][154]
= −[125][134] +[124][135] −[123][145]
= −([123][145] −[124][135] +[125][134] )
= −a.

(6.1)

However, there is no such thing as a 4-linear alternating form not equal to zero
in a 3-dimensional space, so a = 0. Since this implies

[123][145] = [124][135]− [125][134]

the theorem is proved. �

Using this theorem, we can translate a set of conditions of the form h(A,B, C)
to bi-quadratic equations:

[ABD][ACE] = [ABE][ACD]

for any D and E such that A, D, and E are not collinear.
This method of describing a geometry theorem implicitly introduces a num-

ber of non-degeneracy conditions. For example, the fact that 1, 4, and 5 are not
collinear. On the one hand, this is an advantage, as we do not have to express this
kind of non-degeneracy conditions explicitly. On the other hand, this is a disadvan-
tage, as we might add some non-degeneracy conditions we are not aware of and
which might be unnecessary. However, in this specific situation the disadvantage
seems less important, since the user will construct a certain theorem in Cinderella,
thus (in general) avoiding degeneration cases himself.



28 CHAPTER 6. PROJECTIVE GEOMETRY

6.2 Concurrency and Conics

In this section we show how to translate the assertions m((A,B), (C,D), (E,F ))
and c(A,B, C, D, E, F ) to bracket equations.

Theorem 6.2.1. Observe the assertion m((A,B), (C,D), (E,F )). This means that the
lines through A and B, C and D, and E and F go through one point. This assertion
implies that all these 6 points and 3 lines are distinct, and that the point of concurrency
is not one of A,B, C, D, E, F , thus implicitly adding non-degeneracy conditions every
time we use this assertion.

This assertion is equivalent to,

[ABC][CDE][EFA] = −[ABE][CDA][EFC],

and to
[ABF ][CDE] = [ABE][CDF ].

Proof Observe the assertion m((A,B), (C,D), (E,F )), i.e. the lines through A
and B, C and D, and E and F go through one point, say Z. This is equivalent to
the combination of the three assertions

h(A,B, Z), h(C,D,Z) and h(E,F, Z).

Using Theorem 6.1.1 we find the following three equations. Notice how we have
to use the fact that all 6 points are distinct and none of them is the point of con-
currency.

[ABC][AZE] = [ABE][AZC],
[CDE][CZA] = [CDA][CZE],
[EFA][EZC] = [EFC][EZA]. (6.2)

We multiply the left- and right-hand sides and cancel terms that occur on both
sides, and obtain

[ABC][CDE][EFA] = −[ABE][CDA][EFC], (6.3)

thus proving the first equation.
As m((A,B), (C,D), (E,F )) is equivalent to (for example) the assertion

m((A,B), (C,D), (F,E)) we obtain from Equation 6.3 (the left- and right-hand
side are swapped):

−[ABF ][CDA][FEC] = [ABC][CDF ][FEA]. (6.4)

Again, we multiply the left- and right-hand sides from Equations 6.3 and 6.4
and cancel terms that occur on both sides, and we obtain

[ABF ][CDE] = [ABE][CDF ], (6.5)

which proves the second equation of the theorem. �
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We just showed two possible encodings of the m(..)-assertion. However, it
appears that using only the second one suffices in practice. An assertion m(..)
gives us only three different instances of Equation 6.5, all other permutations are
equivalent to one of those three.

Remark 6.2.2. Because of the implicit degeneration conditions introduced, we
have to be careful when using m(..) as a thesis assertion. Additionally, in practice
it appears a proof using m(..) as configuration assertions is harder to understand
than a proof using h(..) as configuration assertions. However, the m(..)-assertion
still has the huge advantage that it represents three h(..)-assertions, thus consider-
ably reducing the amount of configuration assertions and configuration equations.

As this shows that using the m(..)-assertion has both advantages we do not
want to loose, and disadvantages we do not want to have, we choose to leave the
choice to the user of Cinderella. When trying to obtain a proof, he can decide
whether he wants to use m(..)-assertions in the configuration, and whether he
wants to usem(..)-assertions in the thesis. This enables the user to find the ‘golden
mean’ between the shortness and the clarity of the proof.

The next theorem describes how to encode six points on a conic into bracket
expressions.

Theorem 6.2.3. Observe the assertion c(A,B, C, D, E, F ). This means that the six
points A,B,C,D, E, and F are on one conic. This assertion implies that all these six
points are distinct and no three of the points are collinear, thus implicitly adding non-
degeneracy conditions every time we use this assertion.

This assertion is equivalent to the following bracket equation:

[ACE][BDE][ABF ][CDF ] = [ABE][CDE][ACF ][BDF ].

Proof First, observe four distinct points, A, B, C, and D, and the two degenerate
conics c1 and c2. The conic c1 is given by the line through A and B and the line
through C and D, the conic c2 is given by the line through A and C and the line
through B and D. For an arbitrary point x we have

x ∈ c1 if and only if x on AB or x on CD, so [ABx][CDx] = 0
x ∈ c2 if and only if x on AC or x on BD, so [ACx][BDx] = 0. (6.6)

Now, for all λ, µ ∈ R, the equation

λ[ABx][CDx] + µ[ACx][BDx]

describes a conic through A, B, C, and D. Now let

λ = [ACE][BDE]
µ = −[ABE][CDE], (6.7)

and observe the expression

[ACE][BDE][ABx][CDx]− [ABE][CDE][ACx][BDx]. (6.8)
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[ABC][ADE][BDF ][CEF ] = [ABD][ACE][BCF ][DEF ],
[ABE][ACD][BDF ][CEF ] = [ABD][ACE][BEF ][CDF ],
[ABE][BCD][ADF ][CEF ] = [ABD][BCE][AEF ][CDF ],
[ABD][AEF ][BCF ][CDE] = [ABF ][ADE][BCD][CEF ],
[ABE][ACF ][BDF ][CDE] = [ABF ][ACE][BDE][CDF ]. (6.10)

Table 6.1: A basis for c(..)-assertions in the configuration

Since this is a bi-quadratic expression of degree two, which evaluates to zero for
x ∈ {A,B, C, D, E}, this defines a conic on the points A,B,C,D, and E. This
means F is on that conic if and only if

[ACE][BDE][ABF ][CDF ] = [ABE][CDE][ACF ][BDF ], (6.9)

which concludes the proof. �

Another proof, using Grassman-Cayley algebra, can be found in Chapter 3 of
[21]. In general, a single c(..)-assertion gives us 6! = 720 possible equations. How-
ever, in the configuration a basis of the subspace spanned by these 720 equations
will suffice. Such a basis is a set of equations such that the other equations can be
obtained by multiplying sides and removing pairs that occur on both sides. With
basic linear algebra we can obtain a basis for this [22, p. 36]. The basis can be
found in Table 6.1. So, every c(..)-assertion only adds five equations to the set of
configuration equations. However, if the thesis is a c(..)-assertion, we have to in-
clude all 720 possible equations, as each of those equations is equivalent to the
thesis.

6.3 How to Prove

Suppose we are given a certain theorem in planar geometry, containing points
and some collinearity conditions. This means we know that certain brackets (i.e.
expressions of the form [ABC]) are equal to zero. We define B to be the set of
all brackets, i.e. all combinations of three points from the geometry theorem, so
|B| =

(
p
3

)
, where p denotes the number of points in the configuration.

Example Suppose we have a configuration with the points A, B, C, and D. Then

B := {[ABC], [ABD], [ACD], [BCD]},

and |B| = 4 =
(
4
3

)
.

Suppose we have a geometry statement, and by Theorems 6.1.1, 6.2.1 and 6.2.3
we obtained a set of n equations following from the configuration:

c1l ≡ c1r,
c2l ≡ c2r,
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...
cnl ≡ cnr, (6.11)

where ‘l’ denotes the left hand side of the equation, and ‘r’ the right hand side.
Each of the factors of the cil and cir denotes a determinant of three points in the
geometry statement, so each ci,l/r is a product of elements of B. Note that we use
the equivalence sign ‘≡’ rather than the normal equation sign ‘=’ to make it clear
that we are calculating with brackets, elements of B, rather than with the elements
in R they evaluate to. From Theorem 6.1.1 it follows directly that each of the factors
of the cil and cir is not equal to zero.

Moreover, we have an (at least one) equation that implies the thesis we want to
test:

tl ≡ tr. (6.12)

Note that all factors in tl,r should be a factor of at least one ci,l/r. This means
that the brackets in the thesis equation should occur somewhere in the configura-
tion equations.

Remark 6.3.1. Note that it is almost always possible to express the thesis in various
different equations. For the remainder of the section we will just pick one, for ease
of reading. In practice we will test all of them, checking which gives us the shortest
proof, if any.

Now suppose we have a certain oracle that gives us a vector g ∈ Qn, g 6= 0 such
that

1
tl

n∏
i=1

(cil)gi ≡ 1
tr

n∏
i=1

(cir)gi . (6.13)

By multiplying both sides by the greatest common divisor q of the denomina-
tors in g1, . . . , gn, thus clearing the denominators, we obtain the following equa-
tion: (

1
tl

)q n∏
i=1

(cil)vi ≡
(

1
tr

)q n∏
i=1

(cir)vi , where vi = q · gi, so vi ∈ Z. (6.14)

Remark 6.3.2. In words: For each of the n equations we multiply a certain power
of the left sides with each other, and the same power of the right sides. Then all
terms cancel, except for (tl)q on the left side, and (tr)q on the right side.

By the definition of the ci,l/r we know

(cil)a ≡ (cir)a ∀1 ≤ i ≤ n,∀a ∈ Z,

and since q 6= 0 we obtain from Equation 6.14:(
1
tl

)q

≡
(

1
tr

)q

, so tl ≡ tr.

This means such a vector g ∈ Qn gives us a proof that the thesis logically follows
from the configuration. In the next section it will be shown how we can obtain
such a g.
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6.4 Obtaining the Proof

It will be shown that a vector g as in 6.13 can be found by solving linear equations.
We recall that B is the set of all brackets, and define b = |B| and xi such that
{x1, . . . , xb} = B.

Suppose we have a configuration given by c1l, c1r, . . . , cnl, cnr and a thesis
given by tl and tr. Recall that ci,l/r and tl/r are products of elements of B. In-
troduce the b× n matrix X with coefficients in Z, defined as follows:

for all 1 ≤ k ≤ b, 1 ≤ i ≤ n : Xki :=


1 if xk is a factor of cil,
−1 if xk is a factor of cir,
0 otherwise.

(6.15)

The vector Y ∈ Zb is defined in the same way from our thesis.

for all 1 ≤ k ≤ b : Yk :=


1 if xk is a factor of tl,
−1 if xk is a factor of tr,
0 otherwise.

(6.16)

Now observe the following system of linear equations

X · g = Y, (6.17)

with a solution vector g. Since X and Y have integer values, we know that
g ∈ Qn. We will now show that g satisfies Equation 6.13.

Proof From the fact that g satisfies Equation 6.17 we find that

Yk =
n∑

i=1

giXki,∀1 ≤ k ≤ b (6.18)

so
n∑

i=1

giXki − Yk = 0,∀1 ≤ k ≤ b (6.19)

which yields
1

eYk

n∏
i=1

(
eXki

)gi = 1.∀1 ≤ k ≤ b (6.20)

Now

identify eYk with


xk if Yk = 1,
1/xk if Yk = −1,
1 if Yk = 0,

and

identify eXki , 1 ≤ i ≤ n, with


xk if Xki = 1,
1/xk if Xki = −1,
1 if Xki = 0,

for all 1 ≤ k ≤ b, where xk ∈ B. Then take the product over all k, and obtain

tr
tl

n∏
i=1

(
cil

cir

)gi

≡ 1, (6.21)
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which is equal to
1
tl

n∏
i=1

cgi

il ≡
1
tr

n∏
i=1

cgi
ir , (6.22)

which concludes the proof. �

Thus, we have a procedure that enables us to obtain a proof by solving linear
equations, which is much faster than having to use Gröbner bases.

For the implementation there is one technicality to address.

Remark 6.4.1. We have to define a certain order on the brackets, to be able to con-
clude if two factors from the configuration equation represent the same bracket,
i.e. the same element of B. A straightforward solution is demanding them to be
ordered like the alphabet. This however introduces a small problem: When re-
ordering the contents of certain brackets, say [153] to [135], the sign changes, since
[153] = −[135].

For each equation in the configuration we will store whether the sign is equal
on both sides or not, defining

si =
{
−1 sgn(cil) 6= sgn(cir)
1 sgn(cil) = sgn(cir)

(1 ≤ i ≤ n),

and likewise s0 ∈ {−1, 1} for the thesis.
We will then process all equations as if the sign was equal on both sides, thus

making sure the equations can be handled by the procedure above. Suppose this
procedure gives us a certain solution vector g, we simply check if the signs ‘match’
by testing if

n∏
i=1

svi
i = sq

0,

where v and q are defined as in 6.14.
If this equation holds, we have a correct proof. If it does not hold, we have a

proof over the field with characteristic 2. Surprisingly, in all cases tested, the signs
‘match’ whenever a solution vector exists.

Remark 6.4.2. In general, the problem whether a geometric theorem is true or
false is still equal to the decision if tl − tr is in the ideal I generated by cil − cir

(i = 1, . . . , n). This ideal membership problem is normally decided by means of
Gröbner bases, but in the previous chapter we already decided that Gröbner bases
are too slow to be practical in our situation. However, a g as in Equation 6.17 shows
that

tl − tr ≡
n∑

i=1

gi(cil − cir). (6.23)

which proves the ideal membership. If such a vector g does not exist however, we
have no information on the ideal membership. This is why we lose the possibility to
prove a theorem to be false, as a theorem is called false only when tl − tr 6∈

√
I .



Chapter 7

Non-Projective Statements in
Projective Geometry

In this Chapter we present the theory that enables us to represent assertions in
non-projective geometry in brackets. Someone might think that calculating with
expressions that are invariant with respect to linear transformations, as described
in the previous chapter, automatically makes it impossible to prove any theorems
containing for example circles. This is not such a strange thought, since circles
might become conics (and lose their circularity) under linear transformations.
However, by adding two special points to the configuration, we can prove such
theorems.

Moreover, in this chapter we will make clear how to represent not just circles
in bracket notation, but also perpendicularity and parallelism.

7.1 Complex Numbers

With the following procedure we can use complex numbers to express conditions
involving distances, angles, etc. Given a point P = (x, y) ∈ R2 in the plane, we
define zp ∈ C := x + iy. Moreover, zp = r · eiϕ for certain r, ϕ ∈ R. We know
z ∈ R ⇔ z = z, and z ∈ iR ⇔ z = −z.

We switch back to homogeneous coordinates and introduce two ‘points’: I =
(i,−1, 0) and J = (−i,−1, 0). Now observe the bracket [ABI], where A =
(xa, ya, 1) and B = (xb, yb, 1):

[ABI] =

∣∣∣∣∣∣
xa xb i
ya yb −1
1 1 0

∣∣∣∣∣∣ = xa + iya − xb − iyb = za − zb. (7.1)

Likewise, the bracket [ABJ ] evaluates to

[ABJ ] =

∣∣∣∣∣∣
xa xb −i
ya yb −1
1 1 0

∣∣∣∣∣∣ = xa − iya − xb + iyb = za − zb. (7.2)

34
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Remark 7.1.1. Throughout this report we have been working with homogeneous
coordinates, which means that if A = (xa, ya, 1), then A = (λxa, λya, λ) for all
λ ∈ R, as long as λ 6= 0. Now observe what happens if we use

A =

 λxa

λya

λ

 and B =

 µxb

µyb

µ

 , where λ, µ ∈ R\{0, 1}

in Equations 7.1 and 7.2. We will then find

[ABI] = λµ(za − zb) and [ABJ ] = λµ(za − zb).

Thus, in order to avoid any difficulties, we will make sure whenever a bracket [xyI]
occurs on one side of an equation, the bracket [xyJ ] will occur on the other side,
and vice versa.

Example (Collinearity) Now suppose A, B, and C are collinear. Observe the com-
plex numbers z1 = r1e

iϕ1 of the vector (B − A), and z2 = r2e
iϕ2 of (C − A). The

points A, B, and C are collinear if and only if the two angles ϕ1 and ϕ2 are either
the same or opposed to each other. This means ϕ1 = ϕ2 or ϕ1 = π + ϕ2, which
means z1/z2 ∈ R, or equivalently

B −A

C −A
=

B −A

C −A
(7.3)

Using Equations 7.1 and 7.2 this is equal to

[BAI]
[CAI]

=
[BAJ ]
[CAJ ]

, (7.4)

which evaluates to

[ABI][ACJ ] = [ACI][ABJ ], (7.5)

which indeed fulfills the claim at Theorem 6.1.1.

7.2 Circles

We will now show how to encode the fact that four points are on one circle in
brackets.

Theorem 7.2.1. Suppose the four points A, B, C, and D are on one circle, then the
following bracket equation holds:

[ACI][BDI][ADJ ][BCJ ] = [BCI][ADI][ACJ ][BDJ ].

This assertion will be denoted by ci(A,B, C, D).

Note that this matches the bracket equation for a conic through the points A,
B, C, D, I , and J (See Theorem 6.2.3).
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a

b

M

A B

C

Figure 7.1:

Lemma 7.2.2. Take three points in the plane, sayA,B, andC, on a circle with midpoint
M , angle a = ∠BCA and angle b = ∠BMA. See Figure 7.1. First we prove that
2a = b. Because MA = MB = MC we know:

2 · ∠MCB + ∠CMB = 180
2 · ∠MCA + ∠CMA = 180

b + ∠CMB + ∠CMA = 360

which yields
2 · ∠MCB + 2 · ∠MCA− b = 0,

so 2a = b. If we move C around the circle, the angle b never changes, so the angle a
never changes. Which means, if we have a new point D on the circle, we know ∠BCA =
∠BDA.

The converse is obviously true, since it is impossible to move a point C away from the
circle without changing ∠BCA.

Proof We proved four points A, B, C, and D are on one circle if and only if the
angle between AC and BC is equal to the angle between AD and BD. Now switch
to complex numbers as described in the start of this section, and find that this is
equivalent to

zA − zC

zB − zC

/
zA − zD

zB − zD
∈ R,

with arguing as in the example on collinearity above. This equation can be rewrit-
ten to

zA − zC

zB − zC

/
zA − zD

zB − zD
=

zA − zC

zB − zC

/
zA − zD

zB − zD
.

Using Equations 7.1 and 7.2 this transforms to

[ACI][BDI][BCJ ][ADJ ] = [BCI][ADI][ACJ ][BDJ ],

which concludes the proof. �
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A much nicer proof for Lemma 7.2.2 can be given using projective invariant
theory, see for example [23] and [21].

Proof Observe the circle through A, B, C, and D. This is the conic through A, B,
C, D, I , and J , where I and J are defined as above. We define a linear transfor-
mation π that maps (A,B, I, C) on (A,B, I,D). Since A, B, C, and D were on
the circle, and C maps to D, the circle remains the same.

Since the circle is left unchanged, we know that parallel lines remain parallel1,
therefore the line at infinity l∞ is mapped to l∞ under this particular transforma-
tion. Since I and J are (always) the incidences of the line at infinity with any circle,
and I is mapped to I , we know that J has to be mapped to J .

Define l to be the line through A and C, and m to be the line through B and
C. We know the angle between l and m, say α is equal to

α =
1
2i

log(CRl∞(l,m|I, J)).

As the cross ratio is invariant under projective transformation, we know

α =
1
2i

log(CRπ(l∞)(π(l), π(m)|π(I), π(J)).

Considering the fact above that I is mapped to I , the line l∞ to l∞ and J to J , we
have

α =
1
2i

log(CRl∞(π(l), π(m)|I, J),

which shows that the angle between π(l) and π(m) is equal to the angle between
l and m. Since C maps to D we know that π(l) is the line through A and D, like
π(m) is the line through B and D. Thus, we know that ∠ACB = ∠ADB. �

7.3 Parallelism and Perpendicularity

In this section we will exploit the possibilities given by the definition of I and J ,
making it possible to translate assertions about, for example, parallelism to bracket
equations. This might seem a strange thing to do, since parallelism is an excellent
example of a non-projective assertion. However, we will show that I and J make
it possible to represent this assertions in bracket equations, so we can use them in
our prover.

Theorem 7.3.1. Suppose a and b are two lines in the plane. Moreover, take four dis-
tinct points A, B, C, and D, such that A and B are incident with a, and C and D
are incident with b. Then the assertion that a and b are parallel will be denoted by
par((A,B), (C,D)) and is equivalent to

m((A,B), (C,D), (I, J)).

1Take for example the line through A and B′ and the line through B and A′. The point A′ is the
incidence between the circle and the line through A and the midpoint M of the circle, and B′ is the
incidence between the circle and the line through B and M .
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Proof Since a and b are parallel, they meet at infinity, which is any point with
homogeneous coordinates (x, y, 0)T , for all (x, y) 6= (0, 0). Now consider the line
l through I and J . As shown in Chapter 2, this line is given by the cross product
I × J :

l = I × J =

∣∣∣∣∣∣
e1 1 1
e2 i −i
e3 0 0

∣∣∣∣∣∣ = e3 · −2i = −2i(0, 0, 1)T ,

which means only points with a 0 as third coordinate are on this line, and all points
with a 0 as third coordinate are on this line. So, the fact that a and b are parallel
is equivalent to the fact that the lines a, b and l meet in one point. This concludes
the proof. �

Theorem 7.3.2. Suppose a and b are two lines in the plane. Take three distinct points
A, B, and C, such that A and B are incident with a, and A and C are incident with b.
Then the assertion that a and b are perpendicular will be denoted by perp((A,B), (A,C))
and is equivalent to the truth of the bracket equation

[ABI][ACJ ] = −[ABJ ][ACI].

Proof Suppose N = (xN , yN , 1), and write zN := xN + iyN . Moreover, define two
complex numbers,

z1 := zA − zB = r1e
ϕ1 and z2 := zA − zC = r2e

ϕ2 .

The assertion that a and b are perpendicular through A means that the lines AB
and AC build a right angle. This is equivalent to the assertion that ϕ1−ϕ2 = ±π

2 ,
so

z1

z2
=

r1

r2
eϕ1−ϕ2 = ±i

r1

r2
,

so z1
z2
∈ iR. This is equivalent to

zA − zB

zA − zC
= −zA − zB

zA − zC
,

which gives us the bracket expression

[ABI][ACJ ] = −[ABJ ][ACI],

thus concluding the proof. �

Although onemight thinkmidpoints are not so different from perpendicularity
and parallelism, we found out it is much harder to translate into bracket equations.
In fact, up to now we haven’t found an encoding for this assertion.



Chapter 8

On the Implementation

In this chapter some notes are given on the implementation of the prover described
in Chapters 6 and 7. This chapter does not include any source code, it is purely
meant to give an overview of how the transition from a geometric theorem in Cin-
derella to a proof of that theorem can be realized.

8.1 Translating the Assertion

The translation from a geometric theorem in Cinderella into a set of assertions of
the forms described in Chapter 6 and 7, takes place in two steps. These two steps
correspond to the translations from Item 1 to 2, and from Item 2 to 3 in Section
8.2.

Firstly, an algorithm in Cinderella (see for example Section A) is translated into
an OpenMath plangeo.assertion-object, as described in Section 4.2. This can
be done rather straightforward, as every step of the algorithm corresponds to a
single OpenMath Application. For example,

a := Join(A,B)

will be translated into

<OMA>
<OMS name="line" cd="plangeo1"/>
<OMV name="a"/>
<OMA>
<OMS name="incident" cd="plangeo1"/>
<OMV name="a"/>
<OMV name="A"/>

</OMA>
<OMA>
<OMS name="incident" cd="plangeo1"/>
<OMV name="a"/>
<OMV name="B"/>

</OMA>
</OMA>
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directly. Thus, walking through Cinderella’s algorithm step by step, we obtain
an OpenMath plangeo1.assertion representing the configuration. The thesis
added to this object is the last non-trivial incidence the randomized prover con-
cluded.

Cinderella is able to convert the following Cinderella algorithms into Open-
Math elements: Join, Meet, Mid, PointOnLine1, Through2, Orthogonal, Parallel,
CircleMP3, ConicBy5, IntersectionConicLine, IntersectionConicConic,
CircleBy3, PointOnCircle, OtherIntersectionCC4, and OtherIntersectionCL5.
Note that not all of these algorithms can be encoded to bracket equations. However,
it is useful to translate as much objects as possible to OpenMath, as this OpenMath
object can be used by other applications.

In this step we will restrict ourselves to elements we can translate to the aser-
tions given in Chapters 6 and 7. This means that if the OpenMath object from the
previous step has elements such as Mid, an error will be raised and the translation
will be broken off at this point. However, the OpenMath object is still valid, and
might be used by an application that can handle more statements. Moreover, this
two-phased design makes it possible for the prover to handle any theorem in pro-
jective geometry that can be expressed in OpenMath, not just the ones that can be
constructed in Cinderella!

The plangeo1.assertion from the previous step is processed in the following
way:

1. Find all elements (point, lines, conics) in the configuration, say {E1, . . . , Ep},

2. Find all incidences, and link them to the elements, thus finding a set of
incidences Fi ⊂ {E1, . . . , Ep}, where 1 ≤ i ≤ p. This means that element
Ei is incident to all elements in the set Fi,

3. We set G := {1, . . . , p},

4. While G 6= ∅:

(a) Get an index k ∈ G, where first indices corresponding to conics are
processed, then circles, then points, and finally lines,

(b) Encode the element identified by k. For example: If Ek is a conic,
and Fk contains 6 points, an element of the form c(..) is added to the
configuration,

(c) Set G := G\{k}

(d) Set Fi := Fi\{Ek}, for all i ∈ G,

(e) Set G := G\{i} for all i ∈ G for which Fi = ∅.

1A new point on an existing line
2A new line through an existing point
3MP stands for MidPoint
4The two intersections between two conics
5The two intersections between a conic and a line
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Cinderella

Configuration

OpenMath

Lines, Points, etc

Linear equations

GAP

Linear equations

Solution vector

1

2

3

4

OpenMath

Solution vector

Cinderella

Solution vector

Proof

5

6

7

Figure 8.1: The chain of translations

5. Find the incidence the thesis describes. Depending on if this is an incidence
between a point and a line, a point and a conic or a point and a circle, the
type of the thesis will differ.

Notice that the element ‘points’ in Item 4a may be ignored if the user stated
that he does not want m(..) assertions in the configuration (See Remark 6.2.2).
Using the above procedure, a configuration from Cinderella is translated auto-
matically to a configuration consisting of assertions, ready to be converted into
brackets.

8.2 The Prover

The procedure explained in the previous sections was implemented in Cinderella
[4], with the aid of OpenMath [12, 13, 15] and GAP[20].

We cover the following chain of translations, the first 2 items of which are
identical to the translations described in Section 4.2. See Figure 8.1 for a schematic
overview.

1. Cinderella: A configuration described by points and lines, some objects may
have coordinates,

2. OpenMath: A configuration described by points and lines, as in plangeo,
some objects may have coordinates,

3. OpenMath: A matrix X and a vector Y as in Equations 6.15 and 6.16, respec-
tively,
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4. GAP: A matrix X and a vector Y as in Equations 6.15 and 6.16, respectively,

5. GAP: A vector v as in Equation 6.13,

6. OpenMath: A vector v as in Equation 6.13,

7. Cinderella: A vector v as in Equation 6.13,

8. Cinderella: A string representing the proof, where the coordinates of the vec-
tor v have been translated back into their equivalents in bracket expressions.

These translations were implemented using Java, the Riaca OpenMath Library[15]
and GAP[20]. The result was integrated within Cinderella and will be a part of
Cinderella 2, which will be ready someday in the future with more exciting new
options!



Chapter 9

Examples

In this chapter we give some examples of geometric theorems proved using Cin-
derella and GAP. These theorems were created in Cinderella, ‘discovered’ by the
internal Randomized Prover, and then, via OpenMath, given to the prover. Thus,
there has been no optimization whatsoever by the user.

9.1 Pappos revisited

a

b

c

d

e

f g

h

k

A
B

C

D
E

F

G HK

Figure 9.1: Pappos’ Theorem

We again consider a version Pappos’ Theorem, see Figure 9.1. The thesis is that
the lines through B and C, through A and D, and through G and H go through
one point (K). The full output of the prover is as follows:

Conditions:

{h(C, F, G)} On line h

{h(D, F, H)} On line g

{h(B, E, H)} On line f

{h(A, E, G)} On line e

{h(C, D, E)} On line c

{h(A, B, F)} On line a

Assertion:

{m((B, C), (A, D), (G, H))} Through point K

Number of configuration equations: 200

Number of possible theses: 3
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Found a proof for thesis 1. Length: 11.

Found a proof for thesis 2. Length: 11.

Found a proof for thesis 3. Length: 10.

(1) [A.C.F][B.C.G] == [B.C.F][A.C.G] <== {h(C, F, G)}

(1) [B.D.F][A.D.H] == [A.D.F][B.D.H] <== {h(D, F, H)}

(1) [B.C.E][A.B.H] == [A.B.E][B.C.H] <== {h(B, E, H)}

(1) [A.B.E][B.D.H] == [B.D.E][A.B.H] <== {h(B, E, H)}

(1) [A.B.E][A.C.G] == [A.C.E][A.B.G] <== {h(A, E, G)}

(1) [A.D.E][A.B.G] == [A.B.E][A.D.G] <== {h(A, E, G)}

(1) [B.C.D][A.C.E] == [A.C.D][B.C.E] <== {h(C, D, E)}

(1) [A.C.D][B.D.E] == [B.C.D][A.D.E] <== {h(C, D, E)}

(1) [A.B.C][A.D.F] == [A.B.D][A.C.F] <== {h(A, B, F)}

(1) [A.B.D][B.C.F] == [A.B.C][B.D.F] <== {h(A, B, F)}

---------------------------------------------------------------------

(1) [B.C.G][A.D.H] == [B.C.H][A.D.G] <== {m((B, C), (A, D), (G, H))}

Checking proof... done.

Result: [B.C.G][A.D.H] == [A.D.G][B.C.H]

Found first proof in 2.08 seconds, final proof in 3.27 seconds.

In the remainder of the section only the proofs are given, the rest of the prover
output is omitted. A shorter proof can be obtained when using m(..)-assertions in
the configuration:

(1) [A.B.D][C.G.H] == -[A.B.H][C.D.G] <== {m((A, B), (D, H), (C, G))}

(1) [C.D.G][A.B.H] == -[A.C.D][B.G.H] <== {m((C, D), (A, G), (B, H))}

---------------------------------------------------------------------

(1) [A.B.D][C.G.H] == [A.C.D][B.G.H] ==> {m((B, C), (A, D), (G, H))}
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9.2 Pascal

a

bc d

e

f

g

h

A

B
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D

E

F G H

K

Figure 9.2: Pascal’s Theorem

We consider Pascal’s Theorem, as shown in the picture above. The thesis is
that the six points A, B, C, D, E and K are on one conic. The proof is as follows:

(1) [A.C.G][B.C.K] == [B.C.G][A.C.K] <== {h(C, G, K)}

(1) [B.D.H][A.D.K] == [A.D.H][B.D.K] <== {h(D, H, K)}

(1) [B.F.G][A.F.H] == [A.F.G][B.F.H] <== {h(F, G, H)}

(1) [B.C.G][A.B.F] == [A.B.C][B.F.G] <== {h(B, C, F)}

(1) [A.B.C][B.F.H] == [B.C.H][A.B.F] <== {h(B, C, F)}

(1) [A.B.D][A.F.G] == [A.D.G][A.B.F] <== {h(A, D, F)}

(1) [A.D.H][A.B.F] == [A.B.D][A.F.H] <== {h(A, D, F)}

(1) [A.B.E][B.C.H] == [B.C.E][A.B.H] <== {h(B, E, H)}

(1) [B.D.E][A.B.H] == [A.B.E][B.D.H] <== {h(B, E, H)}

(1) [A.C.E][A.B.G] == [A.B.E][A.C.G] <== {h(A, E, G)}

(1) [A.B.E][A.D.G] == [A.D.E][A.B.G] <== {h(A, E, G)}

--------------------------------------------------------------------------------------------

(1) [A.C.E][A.D.K][B.C.K][B.D.E] == [B.D.K][B.C.E][A.D.E][A.C.K] <== {co(A, B, C, D, E, K)}



46 CHAPTER 9. EXAMPLES

9.3 Desargues

A CB

F H

K L
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Figure 9.3: Desargues’ Theorem
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Figure 9.4: Miguel’s six circle theo-
rem

Desargues states that F , G and H are on one line. This can be shown by the
prover as follows:

(1) [B.C.D][E.G.H] == -[B.D.H][C.E.G] <== {m((C, H), (B, D), (E, G))}

(1) [A.B.E][D.F.G] == -[B.E.F][A.D.G] <== {m((A, F), (B, E), (D, G))}

(1) [A.C.D][B.D.H] == [A.B.D][C.D.H] <== {h(A, D, H)}

(1) [A.D.G][C.D.H] == [A.C.D][D.G.H] <== {h(A, D, H)}

(1) [C.E.G][A.E.F] == [A.C.E][E.F.G] <== {h(C, E, F)}

(1) [A.C.F][B.E.F] == [B.C.F][A.E.F] <== {h(C, E, F)}

(1) [A.B.F][A.C.H] == [A.B.H][A.C.F] <== {h(A, B, C)}

(1) [A.B.H][A.C.K] == [A.B.K][A.C.H] <== {h(A, B, C)}

(1) [A.B.K][A.C.E] == [A.B.E][A.C.K] <== {h(A, B, C)}

(1) [A.B.D][B.C.F] == [A.B.F][B.C.D] <== {h(A, B, C)}

---------------------------------------------------------------------

(1) [D.F.G][E.G.H] == [E.F.G][D.G.H] <== {h(F, G, H)}

9.4 Miguel

Miguel states that if ABCF , BCDE, CEFG, AFGH and ABDH form five cir-
cles, then the four points D, E, G and H are on one circle, see Figure 9.4. This is
proved as follows:

(1) [A.F.I][F.G.H][A.H.J][G.I.J] == [A.F.H][F.G.I][A.I.J][G.H.J] <== {ci(A, F, G, H)}

(1) [A.F.H][A.I.J][F.G.J][G.H.I] == [A.F.J][A.H.I][F.G.H][G.I.J] <== {ci(A, F, G, H)}

(1) [C.E.I][C.F.J][E.G.J][F.G.I] == [C.E.J][C.F.I][E.G.I][F.G.J] <== {ci(C, E, F, G)}

(1) [B.C.I][B.D.J][C.E.J][D.E.I] == [B.C.J][B.D.I][C.E.I][D.E.J] <== {ci(B, C, D, E)}

(1) [A.B.H][B.D.I][A.I.J][D.H.J] == [A.B.I][B.D.H][A.H.J][D.I.J] <== {ci(A, B, D, H)}

(1) [A.B.J][A.H.I][B.D.H][D.I.J] == [A.B.H][A.I.J][B.D.J][D.H.I] <== {ci(A, B, D, H)}

(1) [A.B.I][B.C.F][A.F.J][C.I.J] == [A.B.F][B.C.I][A.I.J][C.F.J] <== {ci(A, B, C, F)}

(1) [A.B.F][A.I.J][B.C.J][C.F.I] == [A.B.J][A.F.I][B.C.F][C.I.J] <== {ci(A, B, C, F)}

--------------------------------------------------------------------------------------

(1) [D.E.I][D.H.J][E.G.J][G.H.I] == [G.H.J][E.G.I][D.H.I][D.E.J] <== {ci(D, E, G, H)}
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Figure 9.5: A rectangle and a circle
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Figure 9.6: Another six circle theo-
rem

9.5 A rectangle

In Figure 9.5 an example can be found of a theorem containing parallel and per-
pendicular lines. Our prover gives us the following proof for this theorem:

(2) [B.C.J][A.B.I] == -[B.C.I][A.B.J] <== {perp((B, C), (B, A))}

(1) [C.D.I][A.B.J] == [C.D.J][A.B.I] <== {par((C, D), (A, B))}

(1) [A.D.J][B.C.I] == [A.D.I][B.C.J] <== {par((A, D), (B, C))}

--------------------------------------------------------------------------------------------

(1) [A.B.I][A.D.J][B.C.J][C.D.I] == [C.D.J][B.C.I][A.D.I][A.B.J] ==> {ci(A, B, C, D)}

9.6 Six circles

Observe the geometric configuration in Figure 9.6. The thesis is that the points
A, B, G and H are on one circle. Although this theorem is a lot like Miguel’s
theorem about six circles, thisone can not be proved to be true by our prover. In [22]
Umbach gives a proof in 4 steps, using human reasoning about this configuration.
He too, however, is unable to prove this theorem automatically.



Chapter 10

Conclusion

The goal of this project was to make it possible to proof geometric theorems put
together in a geometry program. The most obvious way to automatically prove ge-
ometric theorems is using Gröbner bases. A few weeks into this project, it became
clear that the Gröbner bases algorithm is too slow to prove geometric theorems
whose polynomial representation is not tweaked. That is when we decided to use
the method described in Chapter 6.

Considering Chapter 7, one might say that projective geometry with I and J
actually is Euclidian geometry. It looks like it could be possible to translate all pos-
sible configurations that one might build in Cinderella to bracket algebra. How-
ever, we must be careful not to forget that we do not have the possibility to prove
theorems false, as we did when using Gröbner bases. Secondly, the prover can
proof some theorems in non-projective geometry, but often fails, as for example in
Section 9.6. Moreover, we traded the common polynomial representation for a
bracket notation most people are unfamiliar with, though it is not hard to learn.
But, in exchange for these disadvantages, we gained the possibility to proof geo-
metric theorems considerably faster than before. Moreover, these proofs are short
and, unlike proofs made by Gröbner bases, easy to check by hand.

In the course of the project the power of OpenMath became clear. Because
of the existing link between OpenMath and GAP [15] it was extremely easy to use
GAP for solving linear equations without any additional programming. Although
that is not such a difficult algorithm, there is no need to implement it yourself. The
added advantage is that GAP will perform a lot better than our own home-made
algorithm. Other advantages of the extensive use of OpenMath include the pos-
sibility to reuse intermediate results, import geometric theorems made by hand,
and in the future, use other computer algebra packages than GAP, or import ge-
ometric theorems made by other geometry programs. All this can be done rather
easily, because of the clarity of the OpenMath standard.

A few questions remain open on the use of the bracket notation and proving ge-
ometry using statements that are invariant under projective transformations. Per-
sonally, I regret that I did not have more time to look into these problems. Firstly,
we again consider the fact that, when proving a geometric theorem, we are actually
testing ideal membership (see Remark 6.4.2). One would expect the restriction to
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linear combinations to be such a huge limitation that the ideal membership can
hardly ever be proved. In practice however, we are able to find a proof for almost
every geometric theorem considered. It would be very interesting to find out why
we ‘get lucky’ so often. This might give us the key as to why we can prove Miguel’s
theorem (Section 9.4) and fail to prove the six circle theorem in Section 9.6. More-
over, it would be interesting to investigate why theorems containing non-projective
geometry fail to be proved more often than theorems that contain only projective
geometry statements. Other things that might be interesting to consider are how
to obtain a proof of minimal length, how to minimize the amount of configuration
equations passed to GAP, etc. In short: there are many interesting things to be
done in this field.

Cinderella and its randomized prover have been out there for a few years al-
ready, the invariant theory used exists since the twenties, and solving linear equa-
tions is not the most recent discovery either. However, the combination of these
three items into a single program gives us a rather interesting result. OpenMath
made it possible to do this in a structured and extendable manner, helping to
achieve the goal of this project. It is now finally possible to create geometric the-
orems by pointing and clicking, and then automatically obtain a proof for that
theorem. Not only can this proof be obtained very quickly, it is short and easy to
check!



Appendix A

Algorithms

A.1 Pappos’ Theorem

The capital characters denote the points, the small characters denote the lines.

A := FreePoint;
B := FreePoint;
a := Join(A,B);
C := FreePoint;
b := Join(B,C);
D := FreePoint;
c := Join(C,D);
E := FreePoint;
d := Join(D,E);
F := Meet(a,c);
e := Join(E,F);
G := Meet(b,d);
f := Join(A,G);
g := Join(A,D);
h := Join(B,E);
H := Meet(e,f);
k := Join(H,C);
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Appendix B

Systems of Polynomials

B.1 Pappos’ Theorem - 1

c1 = lax · pAx + lay · pAy + laz · pAz,
c2 = lax · pBx + lay · pBy + laz · pBz,
c3 = lbx · pBx + lby · pBy + lbz · pBz,
c4 = lbx · pCx + lby · pCy + lbz · pCz,
c5 = lcx · pCx + lcy · pCy + lcz · pCz,
c6 = lcx · pDx + lcy · pDy + lcz · pDz,
c7 = ldx · pDx + ldy · pDy + ldz · pDz,
c8 = ldx · pEx + ldy · pEy + ldz · pEz,
c9 = pFx · lax + pFy · lay + pFz · laz,

c10 = pFx · lcx + pFy · lcy + pFz · lcz,
c11 = lex · pEx + ley · pEy + lez · pEz,
c12 = lex · pFx + ley · pFy + lez · pFz,
c13 = pGx · lbx + pGy · lby + pGz · lbz,
c14 = pGx · ldx + pGy · ldy + pGz · ldz,
c15 = lfx · pAx + lfy · pAy + lfz · pAz,
c16 = lfx · pGx + lfy · pGy + lfz · pGz,
c17 = lgx · pAx + lgy · pAy + lgz · pAz,
c18 = lgx · pDx + lgy · pDy + lgz · pDz,
c19 = lhx · pBx + lhy · pBy + lhz · pBz,
c20 = lhx · pEx + lhy · pEy + lhz · pEz,
c21 = pHx · lex + pHy · ley + pHz · lez,
c22 = pHx · lfx + pHy · lfy + pHz · lfz,
c23 = lkx · pHx + lky · pHy + lkz · pHz,
c24 = lkx · pCx + lky · pCy + lkz · pCz,
c25 = pKx · lhx + pKy · lhy + pKz · lhz,
c26 = pKx · lkx + pKy · lky + pKz · lkz. (B.1)

51



52 APPENDIX B. SYSTEMS OF POLYNOMIALS

B.2 Pappos’ Theorem - 2

c1 = pAx · (pBy · pFz − pFy · pBz)− pBx · (pAy · pFz − pFy · pAz)
+pFx · (pAy · pBz − pBy · pAz),

c2 = pEx · (pGy · pDz − pDy · pGz)− pGx · (pEy · pDz − pDy · pEz)
+pDx · (pEy · pGz − pGy · pEz),

c3 = pEx · (pFy · pHz − pHy · pFz)− pFx · (pEy · pHz − pHy · pEz)
+pHx · (pEy · pFz − pFy · pEz),

c4 = pCx · (pDy · pFz − pFy · pDz)− pDx · (pCy · pFz − pFy · pCz)
+pFx · (pCy · pDz − pDy · pCz),

c5 = pAx · (pHy · pGz − pGy · pHz)− pHx · (pAy · pGz − pGy · pAz)
+pGx · (pAy · pHz − pHy · pAz),

c6 = pGx · (pCy · pBz − pBy · pCz)− pCx · (pGy · pBz − pBy · pGz)
+pBx · (pGy · pCz − pCy · pGz),

c7 = pAx · (pKy · pDz − pDy · pKz)− pKx · (pAy · pDz − pDy · pAz)
+pDx · (pAy · pKz − pKy · pAz),

c8 = pEx · (pKy · pBz − pBy · pKz)− pKx · (pEy · pBz − pBy · pEz)
+pBx · (pEy · pKz − pKy · pEz). (B.2)
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